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Sustainability of an economy relying on two
reproducible assets

Abstract

Evaluating the sustainability of a society requires a system of shadow or ac-
counting values derived from the sustainability objective. As a first step toward
the derivation of such shadow values for a maximin objective, this paper studies an
economy composed of two reproducible assets, each producing one of two consump-
tion goods. The effect of the substitutability between goods in utility is studied
by postulating, in turn, neoclassical diminishing marginal substitutability, perfect
substitutability and perfect complementarity. The degree of substitutability has
strong effects on the maximin solution, affecting the regularity or non-regularity
of the program, and on the accounting values. This has important consequences
for the computation of genuine savings and the sustainability prospects of future
generations.

Key words: sustainable development; maximin; sustainability accounting; substi-
tutability.

JEL Code: O44; Q56.
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1 Introduction

The growing impacts of human activity on the environment has increased concern
for the sustainability of society, of the production of goods and of the natural world.
Sustainability is a complex issue, and there is not even a universally accepted definition
of it (Heal, 1998; Neumayer, 2010; Martinet, 2012). To Solow (1993),1 sustainability means
the ability to continue to support a standard of living (often termed utility), accounting for
all components of human well-being, including the consumption of manufactured goods,
the flow of services from the environment and so on. The dominant view in economics is
that sustainability corresponds to the requirement to sustain a measure of welfare.

A growing body of literature proposes metrics for sustainability accounting (Neumayer,
2010), among which genuine savings indicators are prominent. Genuine savings measures
the evolution of the productive capacities of the economy through net investments in a
comprehensive set of capital stocks, including natural assets. The accounting prices are
the shadow values of an optimization problem, and a genuine savings indicator can be
defined for any dynamic, forward-looking objective function satisfying the property of
independent future (see Asheim, 2007, for details).

When the objective is defined as the standard of living of the worst-off among present
and future generations, sustainability involves sustaining utility over time (Fleurbaey,
2015), and the associated accounting values are those of a maximin problem (Cairns and
Martinet, 2014). The maximin value is the highest level of utility that can be sustained
forever. It depends on the current stocks of manufactured capital, natural capital, human
knowledge and skills, technology, etc. The shadow values of the stocks correspond to the
marginal contribution of each asset to the maximin value, looking forward from current
time and state. Net investment accounted for with these shadow values represents the
evolution over time of the sustainable level of utility, and is interpreted as a measure of
sustainability improvement or decline by Cairns and Martinet (2014). Computing net

1Solow (1993, pp. 167-168) has a vision that transforms sustainability from being an undisciplined,
popular, contemporary expression of the conservationism that has arisen from time to time in advanced
countries, into an economic prescription of durable decisions for the current generation: “If sustainability
means anything more than a vague emotional commitment, it must require that something be conserved
for the very long run. It is very important to understand what that thing is: I think it has to be a
generalized capacity to produce economic well-being.”
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maximin investment is thus meaningful for sustainability accounting along any economic
trajectory, efficient or not, and whether or not maximin is the pursued social objective.

In the present paper, we examine how to set a maximin accounting system in a multi-
sector economy. As with other economic objectives, shadow values can be determined
only through solving the corresponding optimization problem. Solving for the maximin
level of utility for a modern economy, with all its various assets, consumption goods,
production techniques, etc., would be a formidable task. Given the level of difficulty,
taking a series of small steps seems to be the way to begin to tackle the problem. We
thus consider an economy with two reproducible assets, manufactured or natural, and
two arguments of the utility function, one good produced from each capital stock. The
two stocks do not interact in production, but only within utility, raising the controversial
question of substitutability of the components of utility. An important divide is between
the notions of strong sustainability, in which it is held that it is impossible to substitute
for certain environmental goods, and weak sustainability, which allows for substitutability
of all components (Neumayer, 2010). We thus consider the neoclassical substitutable
benchmark and the two extreme cases of perfect substitutability and non-substitutability
(perfect complementarity) in utility.

Our results show that the ability to substitute has striking effects on the maximin
solution. Substitutability makes it possible to use more of a less productive asset in order
to let the other asset’s stock build up. On the contrary, complementarity induces the
redundancy of the more abundant asset, the whole sustainability pressure weighting in
the limiting resource. The effects of the degree of substitutability on the shadow values
are no less striking. Substitutability influences whether a program is regular or not. In
a non-regular program, shadow values can be nil for some goods, even goods that are on
the surface desirable in the economy and might be expected to have positive values. Sub-
stitutability reduces the occurrence of non-regular situations, whereas complementarity
induces non-regularity associated to nil maximin shadow values.

The main contributions of the paper are (i) to begin the task of developing shadow val-
ues for sustainability accounting from scratch, a task that in principle is necessary for any
particular objective and (ii) to clarify in a simple model how the degree of substitutability
in utility influences regularity and the maximin shadow values.

4



2 Motivation

If the concerns for sustainability come from the hypothesis that society’s current de-
cisions are not sustainable, it can hardly be held that the observed, market prices can
be used for sustainability accounting. Our main objective is to explore the possibility of
developing a sustainability accounting system based on maximin values, in the
spirit of genuine savings indicators. Such indicators are based on the shadow values of a
dynamic optimization problem (Asheim, 2007).

Consider a stylized, general framework in which the set of decisions made in an
economy (e.g., consumption, extraction of natural resource) is denoted by a vector c =

(c1, . . . , cq) defined at any time, and the comprehensive set of producing capital stocks
(e.g., manufactured capital, natural assets) by a vector X = (X1, . . . , Xn). Economic
dynamics (production and consumption leading to investment, natural resource growth
and depletion, etc.) are represented by a mapping F (X, c). The transition function rep-
resenting the dynamics of a stock i = 1, . . . , n is denoted by Fi, with dXi

dt
≡ Ẋi = Fi(X, c).

Utility at any time t is derived from combinations of stocks and decisions, and defined
by function U(X, c). All these functions are assumed to be continuous and twice differ-
entiable.

From a given resource allocation mechanism,2 the dynamics F (X, c) provide realiza-
tions of X, c and U(X, c) through time that can be given a value V (X). The marginal
contributions of the various capital stocks ∂V/∂Xi – the shadow values – are used to
compute comprehensive (net) investment, or genuine savings, as

∑
i(∂V/∂Xi) · Ẋi.

Among the possible decision criteria, maximin embodies the idea of sustainability
(Cairns, 2011, 2013; Fleurbaey, 2015): it is not possible to say that a level of well being is
sustainable if some generation in the future cannot enjoy it. The maximin value provides
information on the highest level of utility that could be sustained in the economy, given

2Most of the genuine savings literature is based on the maximization of a welfare criterion (Asheim,
2007; Dasgupta, 2009). Shadow values associated to the path are then used to compute genuine savings. A
notable exception is the work of Dasgupta, Mäler, and colleagues (Dasgupta and Mäler, 2000; Arrow et al.,
2003) who use general, possibly non-optimal resource allocation mechanisms (ram) instead of maximizing
welfare. The shadow values used to compute the genuine savings indicator are the marginal contribution
of each capital stock to the value associated to the trajectory determined by the ram. Integrating the
dynamic path and computing the associated value as a function of all capital stocks can be done only for
simple models with strong assumptions on the ram.
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current endowments. Maximin shadow values could be used to compute sustainable net
investment, even if maximin is not taken as the objective and the economic trajectory is
different from a maximin path (Cairns and Martinet, 2014). Genuine savings based on
maximin provides an indication of the evolution of the sustainable utility level, and thus
on the evolution of the productive capacities of the economy.

The maximin value of a state X is defined as

m(X) = max
c(·)

min
s≥t

U(X(s), c(s)) ,

s.t. X(t) = X and Ẋ(s) = F (X(s), c(s)) , ∀s ≥ t .

If the value function m(X) can be differentiated, the shadow values are ∂m (X) /∂Xi

(Cairns and Long, 2006). Net investment evaluated at the maximin shadow values is∑n
i=1 ∂m(X)/∂Xi · Ẋi. The links between the maximin problem and net investment have

been studied since the work of Hartwick (1977) and Dixit et al. (1980) on Hartwick’s rule,
with recent contributions by Asheim (2007), Doyen and Martinet (2012), and Fleurbaey
(2015).

There are few solved maximin problems, and the task of computing maximin shadow
values for the real economy is obviously out of reach. The only way to proceed is to
build up from simpler problems and to try to gain a greater understanding of the eco-
nomic issues involved. When there are more than one asset, the controversial question
of substitutability arises. Neumayer (2010) stresses that substitutability in production
as well as in utility plays a central role in the study of sustainability.3 The influence of
substitutability in production on the maximin solution has been emphasized since the
work of Solow (1974) and Dasgupta and Heal (1979), who studied interactions between
sectors in the form of an extraction sector providing an input to a manufacturing sector.
Some articles (e.g. Asako, 1980; Stollery, 1998; d’Autume and Schubert, 2008; d’Autume
et al., 2010) study maximin problems with two arguments in the utility function, but
considering the substitutability between a decision variable (consumption) and a state

3So-called weak sustainability postulates that there is substitutability between natural assets and other
capital stocks and goods in production and well-being, while so-called strong sustainability postulates
that there are natural assets that have no substitutes in the long run.
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variable (either the temperature or the stock of a non-renewable resource).4 The question
of the substitutability of consumption goods in utility has received less scrutiny.

Substitutability of the flows from stocks in utility is as important a question for sus-
tainability as substitutability of the stocks in production. We study the sustainability
of an economy with two productive sectors, which interact only through utility, for the
neoclassical case of smooth, diminishing marginal substitutability, as well as the extreme
cases of perfect substitutability and perfect complementarity. Our aim is to characterize
the maximin solution for such problems, and discuss the consequences of current decisions
on a genuine savings indicator computed at maximin shadow values.

In addition to the characterization of maximin solutions in this model, we are interested
in how non-regularity arises in a model with multiple sectors and how the substitutability
in utility influences it. Non-regularity in maximin problems corresponds to situations
in which the maximin path is not a constant utility path at the maximin level.5 Non-
regularity appears to be more than just an isolated anomaly in a few special cases. It
emerges even in the Solow (1956) growth model with capital depreciation (as well as in
the simple Fishery6). In this model, stocks that are beyond what is known in growth
theory as the golden-rule level are redundant. The maximin value is increasing with the
capital stock up to the golden-rule capital stock.7 It is then constant above this level.
Maximin shadow values are thus positive for stocks below the golden-rule level, and nil
above it. This feature has implications for the definition of an accounting system.

We begin small, with a model that extends the simple fishery to an economy with two
4Much of the rest of the literature has studied the axiomatic foundations of the criterion (e.g. Asheim

and Zuber, 2013) or the existence of maximin solutions in specific problems (e.g. Mitra et al., 2013).
5Maximin can be perceived as successively raising the level of the least well-off to the extent possible, to

increase equity. The end result of this sequence of redistributions can be an equalization of utility. Equity
does not necessarily mean equality, however; even if a maximin solution exists, a redistribution to achieve
equality is not always possible. Intergenerational equality is the outcome of the intergenerational-equity
problem and not the objective. In a ‘regular’ maximin problem, it is optimal and efficient to distribute
well being equally over time. Otherwise, the problem is non-regular (Burmeister and Hammond, 1977).
Non-regularities in maximin problems have been found in the models by Solow (1974), Asako (1980),
and Cairns and Tian (2010). A discussion of non-regularities is provided by Doyen and Martinet (2012).
Cairns and Martinet (2014) stress its consequences for maximin shadow values, and thus for accounting.

6The golden-rule of consumption is replaced by Maximum Sustainable Yield. The economic implica-
tions of these two canonical models are parallel.

7Specifically, the maximin value is equal to the net production and the maximin path constitutes a
steady state at the initial capital stock.

7



renewable assets such as two physically separate fisheries. Ultimately, an aim is to find
conditions applicable to the maximin shadow values in an economy with several renewable
assets.

3 An economy with two reproducible assets

3.1 Economic model

We consider a dynamic economy composed of infinitely many generations of identical
consumers, each living for an instant in continuous time. Instantaneous utility U(c1, c2)

is derived from the consumption of two goods, denoted by ci, i = 1, 2. The two goods
interact only through utility.

Each consumption good i is produced by a specific sector using a reproducible asset
Xi. The function Fi(Xi) depends only on the stock Xi and is assumed to be continuous,
(weakly) concave and differentiable. It can represent either the production function of a
manufactured good or the natural growth function of a renewable natural resource.

Ẋi(t) ≡
dXi(t)

dt
= Fi(Xi(t))− ci(t) . (1)

Marginal productivity is assumed to be positive, at least for sufficiently low stock
levels. In a model with decreasing marginal gross productivity and constant capital decay
rate such as the neoclassical Solow growth model mentioned above, it may be the case
that, for large stocks, the marginal gross production does not compensate for capital
depreciation, so that marginal net productivity turns negative for large capital stocks.
Similarly, as in the simple fishery, a natural renewable resource with a carrying capacity
and a maximum sustainable yield (MSY) can have a negative marginal productivity for
stocks beyond that yielding the MSY. We characterize such economic model with the
following definition.

Definition 1 (Single-peaked technology). A technology F (X) is single-peaked if there
exists X̄ such that F ′(X) > 0 for X < X̄ and F ′(X) < 0 for X > X̄. By differentiability,
X̄ is implicitly defined by the condition F ′

(
X̄
)

= 0.
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The capital stock X̄ is the stock which yields the highest production level (maximum
sustainable yield or golden-rule level). A single-peaked technology is a source of non-
regularity in a maximin problem, as any capital stock exceeding X̄ is potentially redundant
(see Asako, 1980).

The maximin value of a state (X1, X2) is the highest level of utility that can be
sustained forever from that state, as of the current date, normalized to zero:

m(X1, X2) = max u , (2)

s.t. (X1(0), X2(0)) = (X1, X2) ;

Ẋi(t) = Fi(Xi(t))− ci(t), i = 1, 2 and

U(c1(t), c2(t)) ≥ u for all t ≥ 0. (3)

Differentiation of the maximin value with respect to time yields a direct link with net
investment at time t (Cairns and Martinet, 2014, Lemma 1):

ṁ(X1, X2)|t =
∂m

∂X1

∣∣∣∣
t

Ẋ1(t) +
∂m

∂X2

∣∣∣∣
t

Ẋ2(t)

= m′X1
(X1(t), X2(t))[F1(X1(t))− c1(t)] +m′X2

(X1(t), X2(t))[F2(X2(t))− c2(t)] .(4)

The following lemmata are established in the Appendix.

Lemma 1 (Stationary fallback). For any state (X1, X2), the maximin value is at least
equal to the utility derived from consumptions at the corresponding steady state:

m(X1, X2) ≥ U(F1(X1), F2(X2)) .

This result means that the maximin value is at least equal to the utility which could be
obtained by consuming the whole (net) production of both stocks, keeping the economy
in a steady state. A dynamic maximin path may, however, yield a higher sustainable
utility.

Lemma 2 (Dynamic maximin path). If the maximin value of a state (X1, X2) is greater
than the utility from keeping the state stationary, i.e., if m(X1, X2) > U(F1(X1), F2(X2)),
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then (i) the consumption of at least one good is greater than the production of the corre-
sponding stock and (ii) that stock decreases.

We conjecture that if the two technologies are single-peaked, the maximin value is
bounded from above by level m̄ = U

(
F1

(
X̄1

)
, F2

(
X̄2

))
. Any state (X1, X2) >> (X̄1, X̄2)

has a maximin value m̄. This case generalizes to two dimensions the maximum sustainable
yield and the associated non-regularity.8

To characterize the maximin value in our two sector economy, we need to make some
assumptions about the interaction between the two goods in the utility function. We con-
sider the neoclassical case of diminishing marginal substitutability as a benchmark. The
results for the cases of perfect substitutability and perfect complementarity are described
afterward.

3.2 The neoclassical benchmark

Consider a twice differentiable, strictly quasi-concave utility function U(c1, c2) such
that limci→0 U

′
ci

(c1, c2) = +∞ (both goods are essential in consumption), U ′ci > 0 and
U ′′ci,ci < 0 (both goods contribute positively to consumption but at decreasing marginal
rates) and U ′′c1,c2 > 0.9 Assume that both initial stocks are strictly positive, i.e., Xi(0) > 0

for i = 1, 2 (otherwise, one is back to the single resource problem). Under these conditions,
and given Lemma 1, one can say that consumption of both goods are positive (ci(t) >
0, i = 1, 2) at any time along a maximin path.

We use the direct approach to maximin of Cairns and Long (2006) to characterize
the regular maximin paths of problem (2). It is based on optimal control theory and
requires defining the costates variables µi(t) for stocks Xi(t), as well as a multiplier
ω(t) for the maximin constraint (3). The Hamiltonian of the problem is H(X, c, µ) =

8Note that no steady state could sustain a utility larger than m̄ due to the production peaks for the
two resources. It is also easy to show that the two stocks cannot increase at the same time without
reducing utility below m̄. Asako (1980), in a two state variables model which is somewhat related to
ours, states that it is obvious that there is no limit cycle.

9This is the set of assumptions of a standard, neoclassical economic model. If, in addition, the utility
function is homothetic, substitutability can be measured by Hicksian elasticity χ =

U ′
c1
U ′

c2

U ′′
c1,c2

(Hicks, 1932).
Goods are complements in the limit where χ→ 0 and perfect substitutes in the limit where χ→ +∞.
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µ1 (F1(X1)− c1)+µ2 (F2(X2)− c2) and the Langrangian is L(X, c, µ, ω, u) = H(X, c, µ)+

ω (U(c1, c2)− u).
Cairns and Long (2006, Proposition 1) show that, along the optimal path, the µi(t)

are equal to the shadow values of each stock at time t, i.e., µi(t) = ∂m(X1,X2)
∂Xi

∣∣∣
t
. The

Hamiltonian of the problem is interpreted as net investment at maximin shadow values,
as noted in eq. (4), and it is nil as long as the necessary conditions hold:

H(X, c, µ) = 0 ⇔ µ1Ẋ1 + µ2Ẋ2 = 0 . (5)

Equation (5) is related to Hartwick’s rule and its converse, which states that if utility
remains constant at the maximin level, net investments are nil over time (Dixit et al.,
1980; Withagen and Asheim, 1998).

The multiplier ω(t) is interpreted as a shadow value or cost of equity, which, when
positive, provides information on the difficulty of satisfying the equity constraint at time t.

The formal expression of the dynamic optimization problem as well as its optimality
conditions are described in the Appendix. From these conditions, we obtain the following
results.10

Result 1 (Shadow values of the stocks). At any time along an optimal path:

• The shadow value of stock Xi is equal to the marginal utility of consumption of the
corresponding good weighted by the shadow value of equity.

µi = ωU ′ci , i = 1, 2 . (6)

• So long as ω > 0, the relative shadow value is equal to the marginal rates of substi-
tution in consumption:

µ1

µ2

=
U ′c1
U ′c2

. (7)

Result 2 (Evolution of the shadow values). At any time along an optimal path:
10As the problem is time autonomous, we omit the time argument in the expressions.
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• Each shadow value decreases at a rate equal to the current marginal productivity of
the corresponding stock:

− µ̇i
µi

= F ′i (Xi) , i = 1, 2 . (8)

• The relative shadow value µi
µj

decreases at a rate equal to the current difference
between the stocks’ levels of marginal productivity:

1

µi/µj

d (µi/µj)

dt
=
µ̇i
µi
−
µ̇j
µj

= −
(
F ′i (Xi)− F ′j(Xj)

)
. (9)

The ratio − µ̇i
µi

can be interpreted as a virtual rate of depreciation of stock i’s value.
Along the optimum path, this rate of depreciation is equal to cost of ‘postponing’ an
investment on a short interval (see Dorfman, 1969, p. 821). The lower a stock, the higher
its marginal productivity and therefore the more ‘costly’ it is to postpone investment
along the optimal path.

Result 3 (Shadow value of equity). At any time along an optimal path, the shadow value
of equity decreases at a rate equal to the sum of the stock marginal productivity and the
rate of change of the marginal utility of consumption for the associated good:

− ω̇
ω

= F ′i (Xi) +
˙[U ′ci]
U ′ci

, i = 1, 2 . (10)

The variable δ(t) ≡ − ω̇(t)
ω(t)

is the rate of change of the factor ω(t). It has some of
the features of a utility discount rate, related to the ‘illusory’ discounting factor ω(t).11

Along the maximin path, ω(t) is endogenous, and thus so is δ(t) which is likely to be non
constant, except at a steady state.

Combining this result with Result 1, we interpret the shadow value µi as comparable
to a present-value price, evaluated at time zero, the marginal utility U ′ci being the shadow
current price of consumption for stock Xi.

11Cairns and Long (2006) interpret ω as a shadow discount factor along the maximin path.
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Result 4 (Steady state). An optimal steady state (X∗1 , X
∗
2 ) is characterized by an equality

of the marginal productivities of all stocks:12

F ′1(X∗1 ) = F ′2(X∗2 ) = δ∗ . (11)

This result means that a steady state is optimal when all stocks have the same
marginal productivity. At a steady state each variable is constant (ċ1 = ċ2 = 0 and
Ẋ1 = Ẋ2 = 0) and m(X∗1 , X

∗
2 ) = U(F1(X∗1 ), F2(X∗2 )). From any time t such that

(X1(t), X2(t)) = (X∗1 , X
∗
2 ) and any time s ≥ t, one has ω(s) = ω(t)e−(s−t)δ∗ and µi(s) =

U ′ci(c
∗
1, c
∗
2)ω(t)e−(s−t)δ∗ for i = 1, 2. Note that, as δ∗ is endogenous to the problem, the

steady state depends on the initial state.13

Either stocks are at a steady state such that marginal productivities are equal or the
economy follows a dynamic path with the depletion of one of the stocks (Lemma 2). Such
a dynamics is characterized by the following result.

Result 5 (Transition path). Along an optimal maximin path, apart from a steady state,
when F ′i (Xi) > F ′j(Xj), the following hold.

• The consumption of the more productive stock i is lower than its production (ci <

Fi(Xi)). This stock builds up (Ẋi > 0) and its marginal productivity decreases over
time (d(F ′i )/dt ≤ 0).

• The consumption of the less productive stock j is greater than its production (cj >

Fj(Xj)). This stock is depleted (Ẋj < 0) and its marginal productivity increases
over time (d(F ′j)/dt ≥ 0).

• The marginal productivities converge, with ċi > 0 and ċj < 0.

Utility is sustained at the maximin level with the substitution of the more productive
resource by the less productive one. The stocks evolve in opposite directions until the
marginal productivities are equal and the economy reaches a steady state.

From Result 1 (eq. (7)) and Result 2 (eq. (9)), we can characterize the shape of the
maximin trajectory.

12Since conditions (6)-(10) remain valid for n stocks, this condition is general to any number of stocks.
13The optimal condition for a steady state in a discount utility problem with constant discount rate ρ

is F ′i (X∗i ) = F ′j(X
∗
j ) = ρ, whatever the initial state.
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Result 6 (Iso-maximin value curves). Along a maximin path with nil net investment at
maximin shadow values and constant utility over time, at any time t, the state (X1(t), X2(t))

and the optimal decisions (c1(t), c2(t)) satisfy

Ẋ1

Ẋ2

=
ċ1

ċ2

= −µ2

µ1

⇔ dX1

dX2

∣∣∣∣
m(X1,X2)=ū

=
dc1

dc2

∣∣∣∣
U(c1,c2)=ū

.

The slopes of the iso-utility curve in the decision map and that of the iso-maximin
curve in the state map are equal. The iso-maximin curves are convex to the origin.
Maximin trajectories follow these iso-value curves, toward an equilibrium at which the
marginal productivities of the two stocks are equal. The relative shadow value governs
the slopes dc1

dc2
and dX1

dX2
at any time along the path (including at a steady state).

Graphical representation Figure 1 is a plot of the solution, with quadratic functions
used to represent production. It is a four-quadrant graph in which the East axis represents
X1, the South axis X2, the North axis c1 and the West axis c2. The north-east [NE]
quadrant represents production F1(X1) and the South-West [SW] quadrant production
F2(X2). The north-west [NW] quadrant plots iso-utility curves, and the South-East [SE]
quadrant is the state map (X1, X2) in which state trajectories can be drawn as well as
level curves for the maximin value.

State X1 satisfies F ′1(X1) = F ′2(0). The straight line14 X1M in the state space [SE]
corresponds to the states for which F ′1(X1) = F ′2(X2), and thus to steady states of the
maximin problem. The corresponding maximin value is given by the utility at equilibrium
in the quadrant NW.

South-West of the equilibrium line X1M , stock X2 is less productive at the margin,
i.e., F ′1(X1) > F ′2(X2). Consumption of stock 2 exceeds its production, while consump-
tion of stock 1 is lower than its production. The trajectory goes North-East toward the
equilibrium line. Along that trajectory, utility is constant at the maximin value. The
two consumption levels converge toward an equilibrium value as the states converge to
an equilibrium with equal marginal productivities. The same pattern occurs (mutatis

14This is a straight line because we assumed quadratic growth functions. The marginal productivities
F ′i (Xi) are then proportional to the stocks Xi, with i = 1, 2, and this gives a linear relationship between
X1 and X2.
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Figure 1: Graphical representation for the neoclassical benchmark

mutandis) north-east of the equilibrium line. For any state North-West of the hatched
area, maximin prices are positive.

From any state in the hatched area, South-East of the state trajectory through M , we
conjecture that the maximin value is equal to m

(
X̄1, X̄2

)
. Stocks are redundant and have

nil shadow values. The hatched area represents a plateau in the maximin value function;
all paths starting from a state in this area are non-regular in the sense that utility can
exceed the maximin value for some time, until the state reaches the steady state

(
X̄1, X̄2

)
and the utility equals the maximin value. Along such paths (including the limiting case
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at the boundary of the hatched area), maximin shadow values are nil.
The interesting feature with two resources substitutable in utility is that some states

which would be redundant when considering a single resource are not when considering
substitutability with another resource. If one stock is below its production peak and the
other one above, the stock above the production peak is used in order to let the other one
grow. Substitutability “limits” non-regularity. A stock may have a positive shadow value
even if it is above its production peak.

3.3 Limiting case: perfect substitutability

We now discuss the case in which the two resources are perfect substitutes, as, for
example, two groundwater stocks with different qualities or two fish stocks with different
nutritive values. This case also covers the more general problem of sustaining a small
economy with trade, as long as the terms of trade are not changing.15 The utility function
is assumed to be linear in the consumption of each good; U(c1, c2) = a1c1 + a2c2.

Mathematical details are quite similar to that of the neoclassical benchmark, except
that, with perfect substitutability, we cannot exclude nil consumption of one or the other
good. Proofs of the following results are provided in the Supplementary Materials.

Result 7 (Perfect substitutability: Steady states). In an economy relying on two perfectly
substitutable reproducible assets, states (X∗1 , X

∗
2 ) ≤

(
X̄1, X̄2

)
such that F ′1(X∗1 ) = F ′2(X∗2 )

are optimal steady states, with consumption levels c1 = F1(X∗1 ) and c2 = F2(X∗2 ).

Just as in the neoclassical benchmark, states with equal marginal productivities are
steady states. Apart from a steady state, maximin paths follow a dynamics in which the
less productive resource is used up and the more productive resource is built up, as in
the neoclassical benchmark. With perfect substitutability, however, one gets a bang-bang
solution in which the less productive stock only is consumed, with a nil consumption of
the more productive resource.

15An economy exporting two goods at given prices has an utility monotonically increasing with the
value of production, whatever the actual preference for consumption goods (even complementarity). It
thus aims at sustaining the export values. This relation follows from the separating hyperplane theorem.
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Result 8 (Perfect substitutability: Dynamics). In an economy relying on two perfectly
substitutable reproducible assets, apart from a steady state, for any state such that F ′i (Xi) >

F ′j(Xj), the constant consumption path with cj(t) = m(X1(t),X2(t))
aj

> Fj(Xj(t)) and ci(t) = 0

is an optimal maximin path. Stock Xj decreases while stock Xi increases.

With such a dynamic path, exhaustion of the less productive resource may be optimal.
Let F ′i (0) > F ′j(0), and denote by X i > 0 the stock level such that F ′i (X i) = F ′j(0).

Result 9 (Perfect substitutability: Optimal exhaustion). In an economy relying on two
perfectly substitutable reproducible assets, a maximin path starting from any state (Xi, Xj)

such that F ′i (Xi) > F ′j(Xj) and m(Xi, Xj) ≤ aiFi(X i) exhausts asset Xj.

Contrary to the benchmark neoclassical case, the relative shadow value is different
from the Marginal Rate of Substitution of utility, except at a steady state.

Result 10 (Perfect substitutability: Shadow values). In an economy relying on two per-
fectly substitutable reproducible assets, apart from a steady state, along an optimal path
with F ′i (Xi(t)) > F ′j(Xj(t)), the relative shadow value satisfies

µi
µj
≥ ai
aj
. (12)

At a steady state with F ′1(X∗1 ) = F ′2(X∗2 ), one has µ1
µ2

= a1
a2
.

The more productive resource is relatively more valued in maximin terms than in the
utility. This has consequences on the iso-maximin curves, which do not have the same
shape as the iso-utility curves.

Result 11 (Perfect substitutability: Iso-maximin curves). The iso-maximin curves are
convex to the origin is the plane (X1, X2), with −dX2

dX1
= µ1

µ2
≥ a1

a2
.

Graphical representation The maximin solution for the perfect substitutability case
is plotted in Figure 2. The interpretation is the same as that of Figure 1, except that
one has corner solutions for the consumption. A path exhausting resource X2 illustrates
Result 9.
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Figure 2: Perfect substitutes

An example We illustrate the previous results by providing an explicit solution for
the maximin value and shadow values in a simple economic model with a renewable
natural resource with logistic growth (F1(X1) = rX1(1 − X1)) and an A-K technology
(F2(X2) = AX2). The respective dynamics are Ẋ1 = rX1 (1−X1)−c1 and Ẋ2 = AX2−c2,
with A, r > 0. Utility is U(c1, c2) = a1c1 + a2c2.

We assume that r > A, so that low resource stocks are more productive than the
manufactured capital stock, and the natural resource is not exhausted. We give the
maximin value for states (X1, X2) satisfying F ′1(X1) > F ′2(X2), i.e., for X1(0) < X1 ≡
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1
2

(
1− A

r

)
. All mathematical details as well as a graphical illustration are available in the

Supplementary Materials.
Along the maximin path, the capital stock X2 is consumed to let the natural re-

source X1 grow (recovery). For paths that do not exhaust the manufactured capital
stock, i.e, trajectories reaching a stationary state with X∗2 > 0 and X∗1 = X1, the

maximin value function is given by m(X1, X2) = a1Γ
(

1
X1
− 1
)−A

r
+ a2AX2, with Γ =

r
4

(
1 + A

r

)1+A
r
(
1− A

r

)1−A
r . Associated shadow prices are µ1 = a1

A
r
Γ (1−X1)−1−A

r X
−1+A

r
1

and µ2 = a2A.
For states (X1, X2) such that m(X1, X2) ≤ a1F1(X1), maximin paths exhaust the

manufactured capital stock and the maximin value function is implicitly given by m =
ra1(1−a2AX2

m )
r
A
(

1
X1
−1
)

(
1+(1−a2AX2

m )
r
A
(

1
X1
−1
))2 .

3.4 Limiting case: perfect complementarity

An issue raised by environmentalists and ecologists is the possibility that some natural
assets do not have substitutes in well-being (Neumayer, 2010). If the two resources are
perfect complements, the utility function is U(c1, c2) = min {a1c1, a2c2}, where a1 > 0

and a2 > 0 are fixed proportions in which the resources are combined to provide utility.
The maximin value in this case depends on the sustainable consumption of each stock,
defined as follows.

Definition 2 (Sustainable consumption). The sustainable level of consumption for a
current stock level Xi is denoted by c̄i(Xi) and defined as

c̄i (Xi) =

{
Fi(Xi) if Xi < X̄i

Fi
(
X̄i

)
if Xi ≥ X̄i

.

In the perfect complementarity case, the capital stock yielding the lowest value aic̄i is
limiting sustainable utility.

m(X1, X2) = min {a1c̄1(X1), a2c̄2(X2)} .
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The maximin value is determined by the “limiting resource”. There are two ways for a
resource to be limiting in our problem. (1) The resource can be relatively less productive in
the long-run, notwithstanding short-term scarcity, and impose a limit on long-run utility.
We use the terminology “globally limiting” then. (2) The resource can be scarce relative
to the other resource given its current stock and impose a limit on current utility. We use
the terminology “locally limiting” then.

To illustrate the influence of a “globally limiting resource”, consider large resource
stocks (e.g., virginal natural resource stocks) characterized by (X1(0), X2(0)) >>

(
X̄1, X̄2

)
.

Clearly, neither resource limits current utility, as under our assumptions the extraction
at the initial time is not bounded for either stock. In this case, c̄i(Xi(0)) = Fi(X̄i)

for both resources. The maximin value for such an initial state is m(X1(0), X2(0)) =

min
{
a1F1(X̄1), a2F2(X̄2)

}
. This level is the upper bound for the maximin value over the

whole state domain. It is a two-dimensional generalization of the Maximum Sustainable
Yield in the single-resource case. We thus have a non-regularity of the redundant stock
type (Asako, 1980; Doyen and Martinet, 2012). When aiFi

(
X̄i

)
> ajFj

(
X̄j

)
, stock j

puts a tighter global limit on sustainable utility than stock i. The stock level X∗i < X̄i

such that aiFi(X∗i ) = ajFj
(
X̄j

)
is the smallest stock of resource i such that the MSY of

Xj is limiting. (If stock Xi decreases below level X∗i , resource i becomes locally limiting
in place of the Fj

(
X̄j

)
). Increasing stock i above level X∗i does not increase the maximin

value, and stocks above this level have a nil shadow value, even if they are below the
production peak.

A stock Xl below its production peak
(
Xl(0) < X̄l

)
can be “locally limiting” if

alFl(Xl(0)) < akc̄k(Xk(0)). The current utility and the maximin value are given by
the production of this locally limiting resource (which may not be the globally limiting
one). The smallest stock for resource k such that resource l is limiting is denoted by
X]
k(Xl(0)) < Xk(0) such that akFk(X]

k) = alFl(Xl(0)). One has m(Xk(0), Xl(0)) =

m(X]
k(Xl(0)), Xl(0)). The non-limiting resource has no marginal maximin value above

stock X]
k(Xl(0)). Its stock is redundant, even though it is below its production peak.

Note that in the case of complementarity the condition for a globally or locally lim-
iting resource involves total productivity levels F , and not marginal values F ′. Marginal
values do not govern the decision as in the previous cases. Since marginal values are nil,
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conditions on quantities and not prices are required.
As compared with the simple fishery (with one stock), having two complementary

renewable resources increases the possibilities of redundancy for the stocks, either globally
(one resource stock may be redundant if the other resource production peak is low) or
locally (one stock is redundant if the other’s current sustainable consumption is low).

The maximin value is a non-decreasing function in (Xi, Xj) with an upper bound
m̄ = ajFj

(
X̄j

)
for stocks above

(
X∗i , X̄j

)
. Any state above this level is characterized by a

double redundancy, with nil shadow values. When utility is limited locally by one of the
resource stocks, for the non-limiting stock k, µk = 0 but for the limiting stock l, µl > 0.
The limiting stock only has a positive maximin value.

Graphical representation These results are illustrated in Figure 3, with resource
2 being globally limiting

(
a1F1

(
X̄1

)
> a2F2

(
X̄2

))
. All the representations are derived

from the results above with i = 1 and j = 2. The hatched area South-East of point
M =

(
X∗1 , X̄2

)
corresponds to states in which both stocks are redundant. From such

states, one can temporarily increase the utility above the maximin value, along a non-
regular maximin path. Both stocks’ shadow values are nil.

The curve 0M , from (0, 0) to
(
X∗1 , X̄2

)
, represents the states for which a1F1(X1) =

a2F2(X2). For these states, both resources limit utility (no redundancy). The maximin
solution is to stay at the steady state (X1, X2). The corresponding sustained level of
utility (the maximin value) is given by U(c1, c2) = a1F1(X1) = a2F2(X2). The maximin
value increases along 0M , from 0 at (0, 0) to m̄ = m(X∗1 , X̄2). Both stocks have nil shadow
values because increasing one stock alone does not increase the maximin value.

For all states East of the curve 0M , resource 2 is locally limiting. A part of stock
X1 is redundant. Maximin value is given by the point on the curve directly west. Stock
X2 has a positive marginal maximin value. For states South of the curve, resource 1 is
limiting, with a similar interpretation. Iso-maximin curves are given by perpendicular
lines starting from any state on 0M .
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Figure 3: Perfect complements

4 Discussion: Accounting for sustainability improve-

ment and decline

From the previous results on the maximin solution, we can discuss the consequences
of consumption choices on the evolution of the sustainable level of utility. This provides
insights for non-maximin paths and sustainability accounting.

Cairns and Martinet (2014) described the interplay between consumption, the maximin
value and sustainability improvement, i.e., an increase over time of the sustainable level
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of utility, along any economic path. Net investment at maximin shadow values is a
measure of sustainability improvement. For any economic state, it is possible to define
the consumption levels resulting in a positive net investment. We consider regular paths
for the neoclassical benchmark in the following discussion.

Assume that, for a given economic state (X1, X2), the maximin consumption levels
(c∗1, c

∗
2) are known. These decisions, which satisfy U(c∗1, c

∗
2) = m(X1, X2), can be used as a

reference point. To do so, consider the iso-utility curve U(c1, c2) = m(X1, X2). At point
(c∗1, c

∗
2), one has µ1

µ2
=

U ′c1
U ′c2

(Result 1). From the definition of net investment (eq. 4), we
derive the condition for non-negative net investment.

ṁ = µ1[F1(X1)− c1] + µ2[F2(X2)− c2] ≥ 0 ⇔ c2 ≤
µ1

µ2

[F1(X1)− c1] + F2(X2) ,

where X1, X2, µ1 and µ2 are given. This gives us a linear relationship between c1 and c2

for the condition ṁ = 0.
Fig. 4 depicts the possible consumption decisions along with their consequences for

sustainability improvement. In the consumption map (NW quadrant), the line ṁ = 0 is
tangent to the iso-utility curve U(c1, c2) = m(X1, X2) at (c∗1, c

∗
2). This delimits four areas,

labeled 1, 2 and 3 on the Figure. Area 1 corresponds to consumption decisions associated
with a sustainable utility (U(c1, c2) < m(X1, X2)) and a positive net investment at max-
imin shadow values, i.e., to sustainability improvement. Area 2 corresponds to decisions
with U(c1, c2) > m(X1, X2) and necessarily entails sustainability decline, i.e., ṁ < 0 (see
Cairns and Martinet, 2014). The two areas labeled 3 correspond to consumption decisions
that induce a sustainability decline in spite of the fact that the resulting utility is lower
than the maximin value and thus would be sustainable or even allow an improvement of
sustainability with different choices.

The same analysis can be done on the perfect substitutability and complementarity
cases. The corresponding Figures are provided in the Appendix.

In our model where investment comes from forgone consumption, reducing current
utility below the maximin level benefits future sustainability only if this ‘sacrifice’ results
in an increase of the maximin value. Sustainability improvement is measured by net
maximin investment. Maximin shadow values can be used as accounting prices along any
path, and provide a valuable information on sustainability improvement.
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Figure 4: Utility, maximin and sustainability improvement

Of course, such an insight can be drawn only from an accounting system based on
maximin shadow values, which requires that (i) these values are properly defined and (ii)
these values are computable.

The analysis in this paper stresses that finding these values is a difficult task, as for any
other optimization problem. But this challenge can be overtaken with proper numerical
tools. Given the theoretical characterization of the maximin solution in this paper, and
given the recursive structure of the maximin objective, a Bellman algorithm could be used
to compute the (approximate) maximin values and shadow values. More generally, there
are strong links between maximin and viability (Doyen and Martinet, 2012) and all the
numerical tools for set-valued analysis could be used to solve maximin problems.

Moreover, the degree of substitutability of consumption goods in utility strongly in-
fluences maximin shadow values, in particular with respect to potential non-regularities.
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Our results show that substitutability reduces the occurrence of non-regularities due to
redundant stock for single-peak technologies. When one stock is below its production
peak whereas another stock is over-abundant, the latter can be depleted to build up
the former. This feature can be generalized to more than two sectors. Also, when one
of the consumption goods is produced by a technology with no production peak (with
F ′(X) > 0 for all capital stocks, regardless of whether there is a finite asymptote), and
this good has substitutes in utility, none of the capital stocks producing these substitutes
can be redundant, whether or not they are produced by single-peaked technologies. There
is no non-regularity is such an economy. This is encouraging for building a sustainabil-
ity accounting system in the world described by the proponents of Weak Sustainability
(Neumayer, 2010). On the contrary, whatever the type of technology (single-peaked or
not), complementarity induces non-regularity. In the world depicted by the proponents
of Strong Sustainability (Neumayer, 2010), a sustainability accounting system would be
useless, and sustainability requires focusing only on the availability (i.e., quantities) of
the limiting resource, possibly the environment.

5 Conclusion

The idea of sustainability has resonance with many people. “Progress” and not decline,
has been sought by ambitious generations, but some have questioned whether continuing
progress might some day give way to a maintenance objective, within natural constraints.
These are economic notions and can be addressed using economic tools.

Sustaining utility is the very objective of a maximin problem. Even if the idea is
not recent, maximin has been applied to only a handful of problems. In this paper, we
characterize the maximin solution for an economy with two separate sectors (e.g., manu-
factured sectors or natural resources). The two sectors interact only indirectly, through
the utility derived from the consumption of the two produced goods. We characterize
the maximin trajectory and the maximin shadow values. This shadow values have an
interest in themselves, independently of the maximin trajectory. They can be used along
any trajectory to compute Genuine Savings at maximin prices, i.e., the evolution of the
capacity of the economy to sustain economic well-being.
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Non-regularity may be a persistent phenomenon in the study of sustainability. The in-
vestigation in the present paper appears to imply that non-regularity can arise where there
is complementarity between different consumption assets. Environmentalists insist that
produced capital is not substitutable for natural capital, and that this non-substitutability
jeopardizes the sustainability of an economy relying on non-renewable assets. This view is
confirmed in the maximin framework by Solow (1974), who showed that sustaining utility
is possible in an economy with a non-renewable input only if the accumulated capital is
a substitute for the resource. Our model extends these concerns to the case in which
substitutability between natural and produced consumption goods is limited to provide
utility.

Moreover, environmentalists may be chagrined to learn that, (a) where prices cannot
be defined and decentralized, it is because there is a non-regularity in which some actions
on quantities are non-unique and difficult to characterize, and that (b) seeking to attain
maximum sustainable yields of renewable resources may not be even close to socially
desirable and that (c) if indifference curves meet axes, extinction may be optimal.

It is clear that solving for the maximin level of utility for a modern economy, with all
its various assets, consumption goods, production techniques, etc., would be a formidable
task. For goods bought and sold in a market, it would not do to substitute market prices
for the shadow values. Whatever may be maximized in a market is almost surely not the
minimum level of all future levels of utility. In any case, market outcomes are obviously
not optimal. Therefore, sustainability is practically and conceptually an extraordinarily
difficult problem. Even if the shadow values could be found for the modern world, it is
inconceivable that they could be implemented in a global political economy that cannot
agree on or implement a price for even a single good, atmospheric carbon. Still, the study
of maximin solutions is useful because it provides insight into how to evaluate the relative
contributions of the different types of capital in attaining the objective. It systematically
confronts the complicated interactions of assets and the difficulty of achieving sustain-
ability. It indicates how shadow values may differ from market prices and hence how the
latter may misdirect decisions in the economy.
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A Appendix: Proofs, mathematical details and exten-

sions

A.1 General results

Proof of Lemma 1. The dynamic path Ẋi = 0 driven by decisions ci = Fi(Xi) is feasible
and yields the constant utility U(F1(X1), F2(X2)). This provides a lower bound for the
maximin value.

Proof of Lemma 2. This is a direct result from Lemma 1 and the dynamics.

A.2 The neoclassical benchmark: mathematical details and proofs

Taking the sustained utility level u as a control parameter and denoting the adjoint
variables of the stocks by µi, one can write the Hamiltonian associated with Problem (2)
as

H(X, c, µ) = µ1Ẋ1 + µ2Ẋ2 = µ1 (F1(X1)− c1) + µ2 (F2(X2)− c2) . (13)

Let ω be the multiplier associated with the constraint (3), so as to write the Lagrangian
as

L(X, c, µ, u, ω) = H(X, c, µ) + ω (U(c1, c2)− u) . (14)

The necessary conditions are, for i = 1, 2 and for any time t, as follows.

∂L
∂ci

= 0 ; (15)

∂L
∂Xi

= −µ̇i ; (16)∫ ∞
0

(
−∂L
∂u

)
ds =

∫ ∞
0

ω(s) ds <∞ ; (17)

lim
t→∞

µiXi = 0 ; (18)

lim
t→∞
H(X, c, µ) = 0 ; (19)
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along with the usual complementary slackness conditions (µi ≥ 0, i = 1, 2);

U(c1, c2)− u ≥ 0 , ω ≥ 0 , ω (U(c1, c2)− u) = 0 . (20)

The optimality conditions above can be given economic meanings in a regular problem,
when (µ1, µ2, ω) 6= (0, 0, 0).

Proof of Result 1. From the equation (15), we get for i = 1, 2;

µi = ωU ′ci . (21)

Dividing through both sides of the equation, it comes µ1
µ2

=
U ′c1
U ′c2

.

Proof of Result 2. From the equation (16), µ̇i = −µiF ′i (Xi), therefore
µ̇i
µi

= −F ′i (Xi), i =

1, 2.

Proof of Result 3. Taking the logarithmic derivative of eq. (21) gives µ̇i
µi

= ω̇
ω

+
˙[U ′ci ]
U ′ci

.

Substituting µ̇i
µi

by the expression obtain in Result 2, we obtain, for i = 1, 2

− ω̇
ω

= F ′i (Xi) +
˙[U ′ci]
U ′ci

. (22)

Proof of Result 4. At the steady state (X∗1 , X
∗
2 ), ċi = 0 and hence ˙[U ′ci] = 0, i = 1, 2. It

follows from eq. (22) that − ω̇
ω

= F ′1(X∗1 ) = F ′2(X∗2 ).

Proof of Result 5. The converse of Hartwick’s rule (eq. 5) implies that one stock increases
while the other decreases, i.e., ci < Fi(Xi) and cj > Fj(Xj). Since the ‘equity’ shadow

value ω is the same for all stocks, one has from eq. (22) the equality F ′i (Xi) +
˙[U ′ci ]
U ′ci

=

F ′j(Xj) +
˙[

U ′cj

]
U ′cj

, which gives us

F ′i − F ′j = ċi

(
U ′′cj ,ci
U ′cj

−
U ′′ci,ci
U ′ci

)
− ċj

(
U ′′ci,cj
U ′ci

−
U ′′cj ,cj
U ′cj

)
. (23)
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Under the properties of the utility function (increasing, concave, and U ′′c1,c2 > 0), the
expressions in both parenthesis are positive. If F ′i > F ′j , then a simple rearrangement
yields

ċi > ċj

(
U ′′ci,cj
U ′ci

−
U ′′cj ,cj
U ′cj

)
/
(
U ′′cj ,ci
U ′cj

−
U ′′ci,ci
U ′ci

)
.

This condition means that ċj > 0 would imply ċi > 0. However, both levels of consumption
cannot increase along the maximin path, where utility is constant over time. On the other
hand, having ċj < 0 is compatible with having ċi > 0. Eventually, either F ′i = F ′j , or else
ci < Fi(Xi). (If ci > Fi(Xi) always, the stock is exhausted in finite time.)

Proof of Result 6. Along the optimal path, for any state (X1(t), X2(t)), the partial deriva-
tives of the maximin value equal the shadow price of the stocks, i.e., m′Xi

|t = µi(t) (Cairns

and Long, 2006). From condition (6), one gets
m′X1

m′X2

∣∣∣
t

= µ1
µ2

=
U ′c1
U ′c2

. At the optimum, the
marginal rate of transformation equals the marginal rate of substitution as in all economic
optimizations. Along the optimal path, µ1Ẋ1 + µ2Ẋ2 = 0 (Cairns and Long, 2006). By
eq. (6), if Ẋi 6= 0 for i = 1, 2,

Ẋ1

Ẋ2

= −µ2

µ1

= −
U ′c2
U ′c1

< 0 . (24)

Along a regular maximin path, utility is constant. One has dU(c1,c2)
dt

= ċ1U
′
c1

+ ċ2U
′
c2

= 0.
This gives us

ċ1

ċ2

= −
U ′c2
U ′c1

< 0 . (25)

Combining conditions (24) and (25), one gets

Ẋ1

Ẋ2

=
ċ1

ċ2

⇔ dX1

dX2

=
dc1

dc2

. (26)

From Result 2 (eq. (9)), we know that, whenever resource Xi is more productive at the
margin than resource Xj, i.e., F ′i (Xi) > F ′j(Xj), then

µ̇i
µi
− µ̇j

µj
= −F ′i (Xi) + F ′j(Xj) < 0.

That gives us information on the shape of the iso-maximin values in the state space for
regular paths. The previous equation tells us that the relative price µi

µj
has to decrease, so,
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from the condition (26), the tangents (in absolute value) to the paths in the state space
(Xi, Xj) have to decrease as well.

A.3 Sustainability improvement: graphical illustrations

U(c1,c2)=m(X1,X2) 

(X1,X2) 
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(a) Perfect substitutes (b) Perfect complements

Figure 5: Utility, maximin and sustainability improvement on special cases
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B SUPPLEMENTARY MATERIALS

B.1 Perfect substitutability: mathematical details and proofs

Consider the case U(c1, c2) = a1c1+a2c2. The Lagrangean associated with the maximin
problem is linear in the decisions, which implies bang-bang solutions.

L(X, c, µ, u, ω) = µ1 (F1(X1)− c1) + µ2 (F2(X2)− c2) + ω (a1c1 + a2c2 − u) . (27)

Optimality conditions The necessary conditions (15) become, for i = 1, 2:

∂L
∂ci

= −µi + aiω ≤ 0 , ci ≥ 0 , ci
∂L
∂ci

= 0 . (28)

The other conditions are unchanged. The complementary slackness reads

ω ≥ 0 , ω (a1c1 + a2c2 − u) = 0 . (29)

From conditions (16), we get

− ∂L
∂Xi

= −µiF ′i (Xi) = µ̇i, ⇔ µ̇i
µi

= −F ′i (Xi) . (30)

By Lemma 1, c1 = c2 = 0 cannot be solution of the problem.

Proof of Result 7. For a regular path, (µ1, µ2, ω) 6= (0, 0, 0), ω > 0 and thus U(c1, c2) =

m(X1, X2). Suppose that both consumption levels are strictly positive, i.e., ci > 0, i =

1, 2. Eq (28) then implies that ∂L
∂ci

= 0 and thus that ω = µ1
a1

= µ2
a2
. Taking the time

derivative of ω, we get ω̇
ω

= µ̇1
µ1

= µ̇2
µ2
. Moreover, from eq. (30), we get the conditions

µ̇i
µi

= −F ′i (Xi), i = 1, 2. Combining these conditions, we can state that a solution with
c1 > 0 and c2 > 0 is possible only for states (X1, X2) such that F ′1(X1) = F ′2(X2). This is
dynamically possible only for a steady state, with c1 = F1(X∗1 ) and c2 = F2(X∗2 ).

Proof of Result 8. Consider a state (Xi, Xj) >> (0, 0) such that F ′i (Xi) > F ′j(Xj) and
F ′i (Xi) > 0. This last condition ensures that the more productive resource is below its
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production peak X̄i.16 We shall demonstrate that, under these conditions, stock Xj is
consumed alone while stock Xi builds up as long as the previous inequality holds by
proving that the opposite is not possible.

Assume that ci > 0 and cj = 0. Let us denote the maximin value by m. Along such
a maximin path, one would have U(c1, c2) = aici = m, which is constant. Therefore, ci
would be constant. By Lemmata 1 and 2, ci > Fi(Xi). Therefore, dXi

dt
= Fi(Xi)− ci < 0.

Also, d2Xi

(dXi)
2 = F ′i (Xi)

dXi

dt
− dci

dt
= F ′i (Xi)

dXi

dt
< 0. Stock Xi would exhausted in finite time

(τ). After that time, utility would be derived only from the sustained consumption of
stock Xj. At exhaustion time, stock Xj would have increased to some level X∗j ≡ Xj(τ)

such that Fj(X∗j ) = m/aj, allowing consumption cj to sustain exactly the maximin utility.
The equilibrium state would be (0, X∗j ).

Let us make a step backward and examine the states through which the path goes just
prior to exhaustion. The dynamics before exhaustion is

Ẋi = Fi(Xi)− ci ⇔ dXi = (Fi(Xi)−m/ai) dt ,

Ẋj = Fj(Xj) ⇔ dXj = Fj(Xj)dt .

Consider an infinitesimal time lapse dt. At time τ − dt, stock Xi is equal to X̃i = dXi =
m
ai

dt. Stock Xj is equal to X̃j = X∗j − dXj = X∗j − m
aj

dt.
By Lemma 1, we know that the maximin value at time τ − dt is greater than or

equal to the equilibrium utility of state (X̃i, X̃j). Let us denote this utility level by
Ũ = U

(
X̃i, X̃j

)
= aiFi(

m
ai

dt)+ajFj(X
∗
j − m

aj
dt). We havem(τ−dt) ≥ Ũ . By substracting

16If both marginal productivities are negative, both stocks are above their MSY value X̄ and we are in
a non-regular case in which the two stocks decrease and converge to a steady state at

(
X̄i, X̄j

)
. Result 8

is relevant only if one stock is below its MSY level.
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m(τ) from both sides of the equation, we obtain the following.

m(τ − dt)−m(τ) ≥ Ũ −m(τ) ;

≥ aiFi

(
m

ai
dt

)
+ ajFj

(
X∗j −

m

aj
dt

)
− ajFj(X∗j ) ;

≥ ai

(
Fi

(
0 +

m

ai
dt

)
− Fi(0)

)
+ aj

(
Fj

(
X∗j −

m

aj
dt

)
− Fj(X∗j )

)
;

≥ mdt
Fi

(
0 + m

ai
dt
)
− Fi(0)

m
ai

dt
−mdt

Fj

(
X∗j − m

aj
dt
)
− Fj(X∗j )

−m
aj

dt
.

Let us write εi = m
ai

dt and εj = −m
aj

dt, as well as τ̃ = τ − dt (and thus τ = τ̃ + dt). We
get

m(τ̃)−m(τ̃ + dt) ≥ mdt
Fi(0 + εi)− Fi(0)

εi
−mdt

Fj(X
∗
j + εj)− Fj(X∗j )

εj
;

⇔ 1
m

(
m(τ̃+dt)−m(τ̃)

dt

)
≤
Fj(X

∗
j + εj)− Fj(X∗j )

εj
− Fi(0 + εi)− Fi(0)

εi
.

By taking the limits εi, εj, dt→ 0, we obtain

ṁ

m
≤ F ′j − F ′i < 0 .

As the maximin value cannot decrease along a maximin path, we get a contradiction. We
thus can say that if F ′i (Xi) > F ′j(Xj), ci = 0 and cj > 0.

By regularity, m = U(c1, c2) = a1c1 + a2c2. Thus, cj(t) = m(X1(t),X2(t))
aj

.

Proof of Result 9. According to Result 8, if F ′i (Xi) > F ′j(Xj), ci = 0 and cj = m
aj
. Assume

that there is a steady state such that U(·) = m ≤ aiFi(X i), then this steady state must
satisfy X∗j = 0 and X∗i ≤ X i. Otherwise, it would satisfy F ′i (Xi) = F ′j(Xj) and we would
have U ≥ aiFi(X i). Given that Xi ≤ X i, we have F ′i (Xi) > F ′j(Xj) and we exhaust Xj.

Proof of Result 10. From the necessary conditions, we have ω =
µj
aj

and ω̇
ω

=
µ̇j
µj

=

−F ′j(Xj). One also has −µi + aiω ≤ 0⇔ µi ≥ ai
aj
µj ⇔ µi

µj
≥ ai

aj
. Given that µi = m′Xi

and
ai = U ′ci , i = 1, 2, one gets that the marginal rate of transformation of maximin value is
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greater than the marginal rate of substitution of consumption.
Let us define the relative price π ≡ µi

µj
and examine how this relative price evolves

over time. Given conditions (30), we obtain

π̇

π
=
µ̇i
µi
−
µ̇j
µj

= −F ′i (Xi) + F ′j(Xj) < 0 . (31)

The relative price of stock j rises. Since one harvests only the stock j, F ′j(Xj) increases
and F ′i (Xi) decreases until the marginal levels of growth are equal.17 In other words, if
one begins with a resource relatively abundant and with a low relative (shadow) price,
one has to harvest only that resource at a level that keeps utility constant. Meanwhile the
other one grows until the steady state at which both resources have the same marginal
productivity.

Proof of Result 11. From condition (26), the optimal path is characterized by

−dX2

dX1

=
µ1

µ2

, (32)

but contrary to the general case, here the utility function and the maximin value do not
have the same shape.

B.2 An example: Perfect substitutability with AK-technology

and a renewable resource

We have a linear utility function; U(c1, c2) = a1c1 + a2c2; a reneawable resource;
F1(X1) = rX1(1 − X1)); and a manufactured capital; F2(X2) = AX2. The steady state
condition for a non-exhaustion (F ′i = F ′j) is X1 = 1

2

(
1− A

r

)
.

We have two types of paths;

1. the ones that end up with X∗2 > 0, X∗1 = X1;

2. the ones that end up with X∗2 = 0, X∗1 ≤ X1 (manufactured capital is exhausted).
17One cannot pass from µi

µj
> ai

aj
to µi

µj
< ai

aj
since the equality is a steady state of the system.
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Case 1
Let m be the maximin value. We know that in such a case; c1 = 0 and c2 = m

a2
, i.e.

Ẋ1 = rX1 (1−X1) and Ẋ2 = AX2 − m
a2
. It may be checked that the solution of theses

equations is of the form X1(t) = X1(0)
X1(0)+e−rt(1−X1(0))

and X2(t) =
(
X2(0)− m

a2A

)
eAt + m

a2A
.

FromX1(t), we may obtain the inverse function t∗ = −1
r

ln
(

1−X1

X1

X1(0)
1−X1(0)

)
and compute

it at the steady state t∗ = −1
r

ln

(
1+A

r

(1−A
r )
(

1
X1(0)

−1
)
)
, which may serve to compute X∗2 =

X2(t∗) as;

X∗2 =

(
X2(0)− m

a2A

) 1 + A
r(

1− A
r

) (
1

X1(0)
− 1
)
−A

r

+
m

a2A
. (33)

Besides, at the steady state, we have c∗1 = F1(X∗1 ) = r 1
2

(
1− A

r

) (
1− 1

2

(
1− A

r

))
=

r
4

(
1− A2

r2

)
. Then, we may compute the maximin value at the steady state

m∗ = a1c
∗
1 + a2c

∗
2 = a1

r

4

(
1− A2

r2

)
+ a2AX

∗
2 . (34)

We substitue (33) into (34) to get the maximin value function;

m(X1(0), X2(0)) = a1Γ

(
1

X1(0)
− 1

)−A
r

+ a2AX2(0) ,

with Γ = r
4

(
1 + A

r

)1+A
r
(
1− A

r

)1−A
r .

Knowing that shadow prices are partial derivatives of the maximin value function, we
have;

µ1 =
∂m(X1(0), X2(0))

∂X1(0)
= a1

A

r
Γ (1−X1(0))−1−A

r X1(0)−1+A
r ;

µ2 =
∂m(X1(0), X2(0))

∂X2(0)
= a2A .
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Case 2
We want to find paths that end up with X∗2 = 0.

X∗2 = 0 ⇔
(
X2(0)− m

a2A

)
eAt
∗

+
m

a2A
= 0 ⇒ t∗ =

1

A
ln

(
m

m− a2AX2(0)

)
.

The corresponding resource stock is

X∗1 =
X1(0)

X1(0) + e
− r

A
ln
(

m
m−a2AX2(0)

)
(1−X1(0))

⇔ X∗1 =
1

1 +
(

1− a2AX2(0)
m

) r
A
(

1
X1(0)

− 1
) .

Besides, we have; m = a1F1(X∗1 ), which becomes

m = r
a1

1 +
(

1− a2AX2(0)
m

) r
A
(

1
X1(0)

− 1
)
1− 1

1 +
(

1− a2AX2(0)
m

) r
A
(

1
X1(0)

− 1
)
 ;

⇔ m =
ra1

(
1− a2AX2(0)

m

) r
A
(

1
X1(0)

− 1
)

(
1 +

(
1− a2AX2(0)

m

) r
A
(

1
X1(0)

− 1
))2 .

Even in this simple framework, if the manufactured capital is exhausted, maximin value
function and associated shadow prices are hard to find.

The figure 6 plots the non-exhaustion case (1) and the exhaustion one (2).18

18The dashed lines represent consumption paths, denoted respectively C(1)
i,j and C(2)

i,j .
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Figure 6: Example on A-K technology and a renewable resource
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