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Abstract 

 
This article presents the results of a literature review performs with a meta-regression analysis (MRA) that 
focuses on the estimates of advanced biofuel Greenhouse Gas (GHG) emissions assessed with a Life Cycle 
Assessment (LCA) approach. The mean GHG emissions of both second (G2) and third generation (G3) 
biofuels and the effects of factors influencing these estimates are identified and quantified by means of 
specific statistical methods. 47 LCA studies are included in the database, providing 593 estimates. Each 
study estimate of the database is characterized by i) technical data/characteristics, ii)  author's methodological 
choices and iii)  typology of the study under consideration. The database is composed of both the vector of 
these estimates – expressed in grams of CO2 equivalent per MJ of biofuel (g CO2eq/MJ) – and a matrix 
containing vectors of predictor variables which can be continuous or dummy variables. The former is the 
dependent variable while the latter corresponds to the explanatory variables of the meta-regression model. 
Parameters are estimated by mean of econometrics methods. 
Our results clearly highlight a hierarchy between G3 and G2 biofuels: life cycle GHG emissions of G3 
biofuels are statistically higher than those of Ethanol which, in turn, are superior to those of BtL. Moreover, 
this article finds empirical support for many of the hypotheses formulated in narrative literature surveys 
concerning potential factors which may explain estimates variations. Finally, the MRA results are used to 
adress the harmonization issue in the field of advanced biofuels GHG emissions thanks to the technique of 
benefits transfer using meta-regression models. The range of values hence obtained appears to be lower than 
the fossil fuel reference (about 83.8 in g CO2eq/ MJ). However, only Ethanol and BtL do comply with the 
GHG emission reduction thresholds for biofuels defined in both the American and European directives. 
 
Keywords: Biofuels, GHG, LCA, Meta-analysis 
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1 Introduction 
 
This article addresses the environmental evaluation issues of advanced biofuels. It focuses on a specific 
environmental evaluation method – Life Cycle Assessment (LCA) – and its estimates of second (G2) and 
third generation (G3) biofuels greenhouse gas (GHG) emissions. The mean Global Warming impact 
indicator, expressed in grams of CO2 equivalent per MJ of biofuel (g CO2eq/MJ), and the effects of factors 
influencing these estimates are characterized and quantified using a meta-regression analysis (MRA): a 
quantitative research method to review and synthesize empirical literature. This research is of primary 
importance as this measure may be interpreted as an estimate of the contribution to climate change of 
advanced biofuels.  
 
First generation (G1) biofuels have been developed to provide a substitute for fossil fuels in order to 
enhance energy independence and mitigate climate change. They mainly correspond to Ethanol and 
biodiesel produced from conventional crops such as sugar cane, sugar beet, wheat, corn, rapeseed, 
sunflower, etc. Nevertheless, G1 biofuels have come up against sustainability issues. Indeed, the use of 
agricultural commodities for the production of biofuels induces an additional demand for these crops and, 
consequently, an increased use of arable land. Furthermore, it has been suggested that it may induce a rise of 
food prices [1]. Additionally, many life-cycle based studies point out that G1 biofuels do not reduce GHG 
emissions as significantly as expected [2]. As a consequence, G2 and G3 biofuels (referred to in this paper 
as advanced biofuels) from biomass residues, non-alimentary crops and wastes have been developed in the 
recent years. These biofuels seem to be more efficient than G1 biofuels in terms of land use, food security, 
GHG emission reductions and other environmental aspects [3].  
 
G2 Ethanol is obtained from the biochemical conversion of lignocellulosic biomass1 and synthetic diesel 
from biomass, also known as BtL (Biomass to Liquids) or biomass FT-diesel, is produced by the 
thermochemical conversion of lignocellulosic biomass. G3 biofuels are produced from microalgae using 
algal oil for biodiesel production from conventional transesterification (a.k.a Fatty Acid Methyl Ester, 
FAME) or hydrotreated vegetable oil (HVO) (See Appendix A for further details). Advanced biofuels are 
currently either in research and development or demonstration phase and still need further improvements to 
be commercially viable.  
 
Some states have set ambitious production targets for biofuels, supported by subsidies and legislative 
incentives. In the European Union (EU), the Renewable Energy Directive (RED, [4]) requires the use of 
10% of renewable energies in the transport sector by 2020 (in 2009, the share was 3.6%). To achieve this 
goal, the contribution of biofuels produced from lignocellulosic materials, wastes and residues is considered 
to be twice that made by other biofuels. This can be viewed as an incentive to develop advanced biofuels. In 
the United States (US), the Renewable Fuel Standard (RFS2, [5]), under the US Energy Independence and 
Security Act of 2007, requires the use of 136 billion litters of biofuels by 2022 (in 2009, 41.9 billion litters 
were mandated). It specifies that 79,3 billion litters must be of "advanced biofuels" and "cellulosic biofuels" 
(the definition of "advanced biofuels" in the RFS2 is different from the one adopted in this paper and will be 
clarified later on). In addition, other countries (Australia, China, Japan, New Zealand, Brazil and others) 
have already been actively developing next generation biofuels and feedstock although there is little policy 
support in these regions [6]. 
 
Furthermore, the EU and the US set a list of sustainability requirements for biofuel production. In both 
regions, the only mandatory quantitative criterion is related to life cycle GHG emissions calculated using the  
LCA method. The RED sets minimum life cycle GHG emission savings for all biofuels compared to a fossil 
fuel reference. These savings are of 35% since 2009, and will be of 50% in 2017 and 60% from 2018 for 
                                                 
1 Lignocellulosic biomass refers to annual crop residues (e.g. corn stover), forest residues, herbaceous 
energy crops (e.g. switchgrass, miscanthus) and woody biomass (e.g. poplar, eucalyptus). 
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new biofuel plants. The RFS2 also sets minimum life cycle GHG emission savings that biofuels have to 
comply with in order to be eligible for appropriate subsidies. Those savings are set to 20% for first 
generation biofuels, 50% to be considered as "advanced biofuel" (as defined in the RFS2, different from our 
definition) and 60% to be considered as "cellulosic biofuel".  
 
Those GHG emission requirements as well as biofuel incorporation targets are clearly in favour of G2 and 
G3 biofuels. This shows the will of policy makers to support their future development compared to G1 
biofuel. That is one of the reasons why we choose to focus on advanced biofuels in this study.  
 
We choose to conduct our literature analysis by reviewing only LCA studies assessing Global Warming 
impact indicators, i.e. GHG emissions, for the following two reasons. First, one of the main objectives for 
developing biofuels is to reduce global GHG emissions in order to mitigate climate change. As an 
illustration, recall that the only quantitative mandatory requirement for biofuel sustainability is related to life 
cycle GHG emission savings in the EU and in the US. Thus, it appears important to check advanced biofuel 
compliance with this requirement by comparing their life cycle GHG emissions with those of a fossil fuel 
reference. Second, a significant literature already exists that assesses GHG emissions of advanced biofuels 
using the LCA approach. Hence a sufficient number of studies is available to investigate this issue. Note that 
because GHG emissions have an environmental impact at a global scale (GHG emission effects do not 
depend on the place where they have been emitted), this literature review includes worldwide studies. 
 
The first applications of LCA to biofuels to measure a Global Warming impact indicator were carried out on 
G1 biofuels in the 90's (such as Kaltschmitt et al. [7]). Since, numerous LCA studies were conducted to 
analyze G2 and G3 biofuel pathways. Despite this substantial literature, the extent to which advanced 
biofuels may have lower GHG emissions than the fossil reference remains a subject of debate. While the 
majority of these studies shows GHG benefits for advanced biofuels compared to a fossil fuel reference, 
some authors come to the opposite conclusion. For instance, LCA GHG emission results selected for this 
study (47 studies providing 593 GHG emission results, see next section for more details) range from -142 
(G2) to 1378 (G3) g CO2eq/MJ of biofuel (see Figure 1); the greatest variability of GHG emission results 
being for G3 biofuels. 
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Figure 1 - GHG emissions extrema for bibliographic results of G2 and G3 biofuel LCA studies (47 studies, 593 

observations) 
 
When looking at Figure 1, one can wonder i) if there is a consensus about GHG emission benefits from 
advanced biofuels and ii)  why there is so much variation among results of these studies even though they are 
all investigating the same phenomenon. 
 
Actually, even if the LCA approach is consistent throughout, each study – by nature – concerns different 
pathways and uses specific data and methodological assumptions. Previous narrative surveys of biofuel LCA 
studies mention that LCA results are inconclusive regarding GHG emission performances of advanced 
biofuels [8–13]. According to these literature reviews, LCA GHG emission results for advanced biofuels 
vary significantly depending on various factors such as: the assumptions made to describe the biomass 
production step (model used to estimate N2O emissions and inclusion of direct and indirect land use 
change), the data used to describe the biomass conversion into biofuel and the general LCA methodological 
choices (system boundaries, the method used to account for coproducts impacts, etc.). While these indicative 
results from literature reviews are really useful, primary study results remain difficult to compare because of 
differences in technical data or methodological choices. 
 
As a consequence, it is quite difficult to attempt any summary and to form an accurate opinion on this topic 
using classical literature reviews methods. In particular, it seems hard to provide one GHG emission 
estimate appropriate for advanced biofuels.  
 
Since most studies are inconclusive, their results may not be relevant for decision support [14]. There is a 
strong need for harmonization of LCA results, especially for policy makers or investors, as suggested by 
Heath and Mann [15] with the "LCA harmonization project". The purpose of harmonization, as defined by 
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Heath and Mann, is to identify and quantify key factors that influence the environmental impacts for a 
technology or product in order to be more conclusive concerning its real environmental performances. At 
present, few studies have tried to harmonize GHG emission results from various LCA studies for advanced 
biofuels. For instance, Handler et al. and Liu et al. [16,17] propose to harmonize GHG emission results for 
G3 biofuels by normalizing their LCA models using same methodological assumptions and same generic 
pathways.  
 
Although it is not possible to calculate one GHG emission estimate appropriate for all advanced biofuels, we 
believe it remains possible to determine central tendencies based on the distribution of previous study 
results. To do so, this article proposes an alternative summary to previous literature reviews, using the meta-
analysis (MA) methodology to describe and synthesize existing estimates of the LCA GHG emissions of 
advanced biofuels. 
 
MA is a quantitative research method developed to compare and/or combine outcomes of different individual 
quantitative studies, named primary studies, with more or less similar characteristics that can be controlled 
for [18]. By nature, each result from a primary study (called an estimate) may be quoted to illustrate the 
uncertainty of estimates. Estimates of previous studies are grouped together in a database, called meta-
database, according to one or more differentiating characteristics. These estimates become then the 
observations, also named effect-size (e-s) (see below), of the meta-database whereas the differentiating 
characteristics become their potential explicative variables. In a MA framework, the e-s is assumed to be a 
function of these explicative variables; function which can be specified and assessed. When this meta-
function is estimated by the means of multi-regression techniques, i.e. specific econometrics estimators, the 
MA is called a meta-regression analysis (MRA)2. This multivariate setup allowed by the meta-regression 
framework is very usefull in the field of literature reviews as it enables us to statistically identify and 
quantify – ceteris paribus – the effect of the most influent characteristics on the e-s. Thus, compared to 
narrative literature reviews, the MRA methodology – thanks to its multivariate setup – gives the opportunity 
to test the influence of specific characteristics, after having controlled for the effect of other ones. Besides, a 
"meta-regression" framework allows to produce an estimation of the mean e-s weighted by the systematic 
influence of its main drivers. Indeed, once statistically estimated, the meta-function can be used to deduce 
original values of the e-s by specifying new values for the main drivers identified corresponding to relevant 
case studies. This technique of benefits transfer using meta-regression models, as it is named in the MA 
literature, may be a particularly well adapted methodology to deal with the so-called harmonization issue 
specific to the LCA literature. 
 
The literature of LCA studies estimating advanced biofuels GHG emissions is now large enough to support a 
statistical assessment of this measure of the mean Global Warming impact indicator. The primary purpose of 
this MRA is to identify and quantify by statistical estimates which factors among i) technical 
data/characteristics, ii)  author's methodological choices and iii)  typology of the study under consideration 
have an impact on variations of the GHG emission estimates. The second purpose of this MRA is to generate 
a distribution of the potential GHG emissions of advanced biofuels and to characterize the mean Global 
Warming impact indicator and its standard deviation across G2 and G3 biofuels. We investigate – through 
an application – the potential for MRA to synthesize LCA literature by highlighting the main determinants of 
result variability in order to perform harmonization. 
 
This paper is organized as follows. Section 2 is a brief summary of both LCA approach applied to biofuels 
and MRA methodology. Section 3 is a description of the meta-database in which the e-s and explanatory 
variables are described. Meta-regression models and the associated results are presented and analyzed in 
Section 4. Main conclusions and methodological discussion are presented in Section 5. 
 

                                                 
2 So defined, MRA may be viewed as a subset of MA in the literature. 



6 
 

2 Methods 
 
First, this section briefly presents the LCA approach and then summarizes how it has been used in the 
literature to estimate Global warming impact indicators of advanced biofuels. Second, the meta-regression 
methodology is briefly presented. Both sections enable a better understanding of the e-s and explanatory 
variables of the MA. 
 

2.1 General presentation of LCA method 
 
Life Cycle Assessment (LCA) is a method based on ISO standards 14040/14044 [19,20] aimed at assessing 
several potential environmental impacts of a product or a service during all of its life cycle. This approach 
takes into account all steps of a product's life cycle: from the extraction of natural resources necessary for its 
production (oil, coal, gas, etc) to its end of life or destruction ("Cradle to Grave" analysis). The LCA 
approach enables the characterization of potential environmental performances of a production system in 
order to identify potential improvements and is a relevant tool for decision makers. 
 
The methodological framework for LCA set by international ISO standards is divided into 4 steps: 

1. Goals and Scope of the study: This step deals with the definition of questions that we want to 
answer in the study and the final users of the results. Hence all methodological assumptions, i.e. the 
scope of the study (system boundaries, functional unit, method to account for coproducts, 
environmental impact indicators, type of data, etc) are described according to the goals of the study. 

2. Life cycle inventory: Input and output flows of matter and energy as well as emissions to the 
environment (air, water, soil emissions and solid wastes) included in the system are listed. 

3. Life cycle impact assessment: Inventory flows are converted into potential environmental impact 
categories using a characterization method. Each flow can contribute to several environmental 
impact categories. Impact categories and associated characterization method are chosen in 
accordance with the goals and scope of the study. 

4. Interpretation of results: Results are analyzed regarding the defined goal and scope of the study. 
 
This methodological framework is also clarified in the ILCD Handbook [21] that provides further guidance 
to assure consistency and quality of LCA studies.  
 
There are two main approaches adopted in LCA studies depending on the type of questions the authors want 
to answer: Attributional LCA (A-LCA) and Consequential LCA (C-LCA). In an A-LCA, all the flows 
physically linked to the product's life cycle are included in the system's boundaries [22]. C-LCA has 
emerged as a modeling approach that captures impacts occurring beyond direct physical relationships 
assessed in A-LCA [22]. It extends the system's boundaries compared to A-LCA in order to consider market 
information in the life cycle inventory to assess the effects of a decision on the system [23]. 
 
LCA results could also vary from one study to another because of different sources of uncertainties. The 
nature of these uncertainties could be stochastic uncertainties (i.e. uncertainties linked to values of process 
data or characterization factors for example) or choice uncertainties (i.e. choice of methodological 
assumptions, impact assessment method, system boundaries, localization of data, etc) or lack of knowledge 
of studied system [21]. Uncertainties should be addressed in LCA studies by applying for instance Monte 
Carlo method to assess stochastic uncertainties or by conducting a sensitivity analysis to assess choice 
uncertainties. 

2.1.1 Specificities of LCA applied to biofuel pathways 
 
The first applications of LCA for the environmental evaluation of biofuels were carried out in the 90's and 
since then; many methodological issues concerning this product category have been emphasized. The main 
specific methodological assumptions on biofuel LCA studies are: 
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o system boundaries: usually, a distinction is made between "Well To Tank" (WTT) boundaries that 
include all steps from the production of biomass feedstock to the transport and distribution of fuel 
and "Well To Wheel" (WTW) boundaries that include the WTT steps and the fuel use (end-of-life). 
Infrastructures may or may not be included within the system boundaries. 

o functional unit: it is a measure of the function of the studied system. All LCA results from the same 
study should be expressed in the same functional unit to enable comparison. A usual functional unit 
in LCA of transportation systems is a "kilometer driven by a reference vehicle on a standard driving 
cycle (and assuming that generally the different fuels have a similar performance in terms of 
acceleration, max speed, etc.)". Another classical functional unit for assessing fuels is "the 
consumption of one MJ of fuel in a motor" expressed in MJ. 

o reference system: results of the studied system have to be compared with results of a reference 
system (usually a fossil fuel). This reference system has to be defined in accordance with study 
purposes and methodological choices; in particular it must have similar boundaries, the same 
functional unit and similar geographical and temporal context. 

o the method to account for coproduct: Another classical methodological issue in LCA concerns the 
fact that more than one product can be produced in the studied system (called coproducts). 
Distributing environmental burdens among products and coproducts of a process is a controversial 
issue in LCA. Two types of methodology are generally applied for the multiproduct cases: the 
substitution method and allocation method. This last method consists in sharing proportionally the 
environmental impacts between products and coproducts based on physical (e.g. mass, energy) or 
economical characteristics of the products. With the substitution method, allocation is avoided and 
the burdens associated to alternative ways of producing the coproduct are subtracted from the final 
result. The LCA ISO standards recommend the system expansion method (also called substitution 
method) [24,25] but the choice of the method to account for coproducts strongly depends on the 
purpose of the study and on the nature of the studied system. 

 
Biofuels use biomass as raw materials. Hence, LCA applied to biofuel pathways has to deal with some 
classical issues linked with the biomass production: 

o Land Use Change (LUC): It refers to all changes induced by land conversion or land management 
changes.  Direct LUC is mainly treated as the above and below ground carbon release from the 
conversion of forests or grasslands into agricultural land. Indirect LUC refers to all changes that 
occur when the increased demand for agricultural products induces land conversion in other parts 
of the world. It is important to note that these changes not only affect GHG emissions but other 
environmental aspects such as biodiversity, soil fertility, etc. Indirect LUC is the main subject of 
debate nowadays concerning biofuel environmental assessment, especially regarding GHG 
emissions [26] but there is no consensus on the way how to account for it in LCA methodology. 

o Nitrogen cycle: Nitrous oxide (N2O) field emissions are known to be the subject of controversy in 
the biofuel LCA world since Crutzen et al. [27] published "N2O release from agro-biofuel 
production negates global warming reduction by replacing fossil fuels". There is a huge 
uncertainty about these emissions because they depend on local factors and this gas has a high 
GWP (around 300 times as much as CO2). In a G1 biofuel LCA study conducted for the French 
government, the uncertainty on these emissions is estimated to be 50% [28]. To estimate these 
emissions, some studies use the IPCC Tier 1 methodology [29] based on the amount of nitrogen 
fertilizer applied in the culture. However, N2O emissions depend on other factors such as soil 
characteristics and climate. Other assessment methods including these factors should provide a 
more accurate estimation. 

o Carbon cycle: Considering the short-term carbon cycle, many biofuel LCA studies suppose that the 
amount of carbon captured by the biomass during the photosynthesis is equal to the amount of 
carbon released in the atmosphere during the biofuel combustion. So those studies do not take into 
account either the carbon stored by the biomass or the carbon releases during biofuel use, this is 
called the carbon-neutrality hypothesis.  
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2.2 General presentation of meta-analysis method 
"Meta-analysis refers to the statistical analysis of a large collection of results from 
individual studies for the purpose of integrating the findings. It connotes a 
rigorous alternative to the casual, narrative discussions of research studies which 
typify our attempts to make sense of the rapidly expanding research literature" 
[30]. 

 
The Glass' pioneering articles [30–32] in educational research are usually cited in the literature as being the 
first ones to propose and develop this method. Over the past three decades, MA has first been extensively 
applied to clinical studies in psychological and educational research and then to health sciences. It is now 
increasingly employed in other research fields. Since the early 1990s, this method has been gradually more 
and more accepted in social sciences, such as marketing and economics3. 
 
To our best knowledge, two articles can be identified as the precursors of the application of this 
methodology to synthesize LCA estimates for biofuels [33,34]. Farrell et al. [33] aim at estimating reliable 
values for the net energy and life-cycle GHG emissions of corn Ethanol in the US. They carry out a 
harmonization exercise on 6 studies, adjusting their methods and data to what the authors argue to be best 
practices. Bureau et al. [34], on the other hand, focuses only on the energy balance since they consider there 
is too much controversy involving life-cycle GHG estimations (due to uncertainties in the quantification of 
N2O emissions from agricultural production and indirect land use change). Rather than trying to determine 
best estimates, they aim at identifying the main determinants of the net energy value for G1 biofuels.  
 
MA is nothing else than a particular methodology of literature reviewing. This method has not been 
proposed to synthesize any kind of research literature, but only studies with quantitative results: "Meta-
analysis is the analysis of empirical analyses" [35], not theoretical ones. Applied to environmental 
evaluation methods, this methodology is thus relevant to review previously reported LCA studies outcomes.  
 
Research synthesis aims at summarizing findings in such a way that clear and uncontroversial conclusions 
may be drawn from previous accumulated knowledge. Yet, estimates obtained by LCA approach are 
characterized by large differences among study results. Even if different studies deal with a same issue, each 
one departs from previous literature by using different data sets, different methodological choices, etc. 
Research synthesis may thus appear as an especially difficult task when reviewing LCA literature. 
Compared to qualitative literature reviews, the original idea behind MA is to consider study results in the 
same way as any scientific phenomenon. Each reported result is viewed as an "observation" of a complex 
dataset, "no more comprehensible without statistical analysis than would hundreds of data points in one 
[LCA] study" [32]. MA may then be understood as a set of statistical techniques, such as econometrics, 
which allows to systematically summarize quantitative studies. It is a complementary method to narrative 
literature surveys that generally provide a more qualitative than quantitative analysis of estimate results. 
Using econometrics methods, MRA allows to review and analyze previous results through a ceteris paribus 
reasoning [36]. By doing so, outcomes from many studies can be integrated and combined in such a way that 
comparison between their results become easier. 
 
MA provides a quantitative summary of estimates results, such as mean estimates and confidence intervals of 
the quantitative results among studies. Compared to narrative literature surveys, the major contribution of 
MA consists in modelling estimate result variations as a function of different factors. The use of specific 
econometrics method allows then to statistically estimate and quantify their influence on study outcomes. 
 
More formally, let the generic form of the linear regression model be the "original model" of the MRA 
equation: 
 

                                                 
3 Six meta-analyses were published at the same time in the field of economics [35,106–110]. See for instance Stanley [40] for a 
more comprehensive presentation. Standard references for technical aspects of meta-analysis are [38,39,111,112]. 
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In MRA dealing with LCA studies, X could be stated as being composed of three kinds of variables. 

( )( , ) ( , ) ( , ),1 ( , )
( , , , ) 

I K I t I mI I s
X C T M S=  where T, M and S are assumed to be (I×t), (I×m) and (I×s) vectors, respectively. T 

is composed of t variables related to technical characteristics of pathways assessed in the primary studies. In 
this MRA, it corresponds to biofuel characteristics such as the type of biomass feedstock, the type of 
technologies and associated yields, etc. The m variables of M refers to methodological assumptions 
reflecting researcher choices: for instance the type of LCA approach (A-LCA or C-LCA), the system 
boundaries, etc. Finally, the s variables of S correspond to the typology of the study under consideration 
such as the type of this study (peer review or working paper for instance), the publication year or the 
geographical location of authors. Of course, the definitive specification of eq. (1) depends on both the 
particular issue investigated (here, Global Warming impact indicator of advanced biofuels) and studies 
reviewed in the MRA. 
 

2.2.1 Treatment of heteroskedasticity in meta-regression analysis 
 
Heteroskedasticity is a well-known problem in MRA literature. Recall that the basic linear regression model 
assumes ( ) 2'E Iεεε σ= . This assumption implies that the variance-covariance matrix of the vector of 

parameters estimates, 
( ),1K
β , is equal to  ( )

2 1
'X Xεσ −

. More particularly, it is thus assumed: 

2 2
, ,   1, ,i i Iε εσ σ= ∀ = … . When applied to the MRA framework, the homoskedasticity assumption of the 

disturbances may not be held. 
 
By nature, primary studies results are not estimated with the same precision. In econometric terms, it means 
that each estimate has a different standard error, that is: , , ,   i j i jε εσ σ≠ ∀ ≠ . As a consequence, the variance 

of ε  in eq. (1) varies across its observations and e-s estimates, iy , may not be considered as having 

homogeneous variances. Indeed, "e-s" estimates are drawn from different primary studies. These studies use 
different i) technical data/characteristics, ii)  author's methodological choices and iii)  do not have the same 
typology. These reasons, among others, may explain why each e-s estimates are estimated with varying 
degrees of precision.  
 

In presence of heteroskedasticity, the Ordinary Least Square (OLS) estimates, 
( ),1K
β , remain unbiased and 

consistent. Nevertheless, heteroskedasticity often leads to wider parameter estimate confidence intervals 
which may cause insignificant relationships between independent and dependent variables if not accounted 
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for4. Therefore, heteroskedasticity is potentially a serious problem and has to be explicitly treated in MRA. 
Various solutions have been used in the MRA literature to correct for heteroskedasticity5. Two majors 
approaches have been employed in the literature. 
 

2.2.2 Methods of estimation using Heteroskedastic Consistent Covariance Matrix 
 
One of the most common approaches is to use heteroskedastic consistent estimators such as White's or 
Huber-White's Heteroskedastic Consistent Covariance Matrix (HCCM). The Newey-West estimator has also 
been used in some MA. The latest has been designed for stationary time-series data and, as a consequence, 
Nelson & Kennedy [37] do not recommend to employ this estimator in a MRA framework. The use of White 
and/or Huber-White standard errors theoretically corrects for heteroskedasticity. 
 
Nevertheless, non homogeneous variances may remain in practice, more particularly when MRA are applied 
to small sample sizes. The white and Huber-White estimators are generally used because the source of 
heteroskedasticity is not exactly known. It is not the case in the context of MRA in which the source of 
heteroskedasticity is clearly identified. Indeed, it has already been explained that MRA are subject to 
heteroskedasticity because e-s estimates are obtained with varying degrees of precision. That is to say, their 
respective standard errors are not the same. In economic sciences, e-s estimates correspond to partial 
regression coefficients drawn from primary studies. When estimating these coefficients, primary studies also 
estimate their standard errors. These estimates provide a measure of the MRA heteroskedasticity. This 
information may be used to adequately correct for heteroskedasticity. The Weighted Least-Squares (WLS) 
method of estimation takes such information explicitly into account in its estimation procedure. 
 

2.2.3 The weighted least-squares method of estimation 
A second alternative consists in estimating the parameters by using the WLS regression. Indeed, if iy 's 

variances are known, the most straightforward method of the correction of heteroskedasticity is by means of 
WLS6. 
 

                                                 
4 A wider confidence interval of a coefficient, say iβ , means that its variance, 2

iβσ , is greater than expected. Thus, it conducts to 

a decrease of the t-value of iβ , 


2i

i

itβ
β

β
σ

= , which increases the probability of falsely accepting the null hypothesis of tests 

of significance. 
5 See for instance Nelson & Kennedy [37] for a review of heteroskedasticity treatments used in meta-analysis studies dealing with 
environmental economics issues. 
6As explained in Gujarati [113], once the original model has been transformed, the variance of "new” disturbance terms, *iε , is: 

( ) ( )

( )

( ) ( )

2

* *2
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2
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1
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1
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i
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i
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i
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E
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σ
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=
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which is a constant. That is, the variance of the transformed error term, *iε , is now homoskedastic. 
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Let ,iεσ  be the estimated standard error7 of the i-th e-s estimate, iy , for any i. Knowing the iy 's 

heteroskedastic variances, 2,iεσ , the WLS method of estimation takes this information into account explicitly 

by, first, dividing eq. (3) by the standard errors of iy , ,iεσ , giving: 
-1

,

, , , ,

1
,       1, ,

K
l ii i

l
li i i i

xy
i I

ε ε ε ε

εα β
σ σ σ σ

= ⋅ + + ∀ = …∑      (4) 

Second, the Ordinary Least-Squares (OLS) method of estimation is applied to the transformed variables, i.e. 
to eq. (4). 
The more ,iεσ  is important, the less is the precision of iy . Thus, by dividing each iy  by its standard error 

estimate, ,iεσ , the WLS allocates to each e-s estimate a weight which is inversely proportional to its degree 

of precision. Intuitively, less precise e-s estimates, iy  with wider ,iεσ , obtain relatively smaller weight than 

more precise ones in minimizing the (weighted) sum of residual squares. Indeed, recall that the OLS method 
consists of minimizing the sum of residual squares: 

( ) ( )
2

1, ,1
1

'
I

i
I I

i

Min e Min e e
=

 =  
 

∑  

where 
( ),1I
e  is the column vector of residuals defined as follows: 

( ) ( ) ( )


( )

( ) ( ) ( ) ( )


,1 , ,1,1

,1 ,,1 ,1

     

       

I I K IK

I I KI K

Y X e

e Y X

β

β

= +

⇔ = −
 

where 
( )


,1K
β  is the column vector of parameters estimated by the OLS method. 

Thus, applying the OLS method to eq. (4), WLS parameters estimates are obtained by minimizing: 
2

1

2
2

1 ,

2

1

        

,

1
              (5) 

                  (6)

I

i

I

i
i i

I

i i
i

iMin

i

Min e

Min w e

e

ε

ε

σ

σ=

=

=

⇔ ⋅

⇔

 
∑  
 

∑

∑

 

According to eq. (5) and (6), the WLS estimators are obtained by minimizing a weighted sum of residual 
squares with the iy 's unconditional variances acting as the weights8: 

( )
1

i
i

w
Var y

=         (7) 

Weights defined in eq. (23) are known as being those that minimize the variance of the WLS estimators. 
These weights will then provide estimators that are BLUE (Best Linear Unbiased Estimators). In a particular 
framework of MA (the Fixed Effects Size model), these particular weights are obtained from the estimated 
standard error of each e-s estimates, iy , drawn directly from primary studies [38,39]. 

 
 

                                                 
7 Again, like e-s estimates, estimated standard errors are drawn from primary studies. 
8 The comparison of eq. (4) and eq. (6) may explain some confusion encountered in the literature. As highlighted by Nelson & 
Kennedy, some studies refer to weights based on variances and others refer to weights based on standard errors. As shown in eq. 

(4), standard errors weights, ,iεσ , are used to transform the variables, but as a consequence (see eq. (5)), it is variances weights, 

2
,iεσ , which are required to minimize the weighted sum of residual squares. 
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3 Database of LCA results of GHG emissions for advanced biofuels 

3.1 Construction and composition of the database  
 
As mentioned before, the goal of this study is to explain the variations of LCA results for GHG emissions of 
advanced biofuels. Consequently, the variable of interest (so-called effect-size (e-s) or dependent variable) is 
the result for GHG emissions per MJ of biofuel calculated with a LCA approach. These estimates have been 
drawn from the study sample of this MA. One value for GHG emissions (i.e. the estimate) corresponds to 
one observation in our MA sample. As one study can contain several estimates, our database (i.e. our MA 
sample) can be composed of more than one observation per study (I J≥ , recall eq.(1)).  
 
The inclusion of all estimates from a single study is a source of disagreement in the MA literature. Some 
authors believe that only one estimate should be included per study based either on the mean of the available 
estimates, or selected on the basis of expert judgment, while other authors advocate including all estimates 
as a method of boosting sample size (see Stanley [40] for a discussion on this issue). We choose to include 
all estimates from a single study for the following two reasons. First, the choice of a particular estimate is 
subjective, and when facing the same estimates, different researchers may undoubtedly make different 
choices. To maintain a position as neutral as possible, we considered all available explicit results in the 
study or which are easily inferred. Second, the core of MA is to summarize quantitative literature in a 
systematic way regardless of its quality. Hence, it would not be relevant to select studies ex-ante regarding 
their quality since this choice would be arbitrary. The MRA literature proposes various ex-ante tests (such as 
statistical ones) that can lead to exclude some studies ex-post, or at least some of their estimates, from the 
database/MA sample. 
 

3.1.1 Selection and description of studies 
 
Before proceeding to a MA analysis, the database of the MA has to be constituted. To do so, some common 
procedures exist in MA. Stanley [40] describes three steps to conduct a MA. First, primary studies having 
estimated a common quantitative effect are identified among published and unpublished literature. This set 
of studies is the material of the MA. Second, each article results and features are coded in a database. By 
doing so, studies are characterized in a way that allows them to be compared. Their findings, i.e. their 
estimates, become the observed values of the dependent and independent meta-variables. The e-s and 
potential factors which are supposed to have any influence on its variations are identified and summarized in 
a coded form: the explanatory variables of the matrix X. Third, the MRA can be conducted to estimate the 
magnitude of the quantitative effect under consideration and better understand variations in the reported 
estimates. 
 
This section details the selection process of studies included in this MA. To obtain and analyze estimates for 
the GHG emissions of advanced biofuels, a large bibliographical research has been carried out to collect 
studies using an LCA approach. We have taken a census of both published articles and "grey literature", 
such as unpublished papers, conference papers, official reports. The existence of published articles which 
present detailed literature reviews dealing with close issues than ours has already been mentioned: [8–13]. 
These literature reviews were the starting point of the bibliographic research. Entries of their bibliographic 
references have been systematically reviewed. Then, to complete this first paper selection, a web-based 
keyword search - e.g. "LCA", "biofuel", "second generation biofuel", "third generation biofuel", "advanced 
biofuel", "cellulosic ethanol", "lignocellulosic ethanol", "synthetic diesel", "syndiesel", "BTL", 
"microalgae", "microalgae biodiesel", etc. - has been done on relevant literature databases (Science Direct, 
Web of Science, SciVerse, Springer Link, etc ), web sites of major publishers of academic journals 
(Blackwell, Elsevier, Kluwer, Sage, Springer, Taylor Francis, and Wiley). The "grey literature" has been 
more particularly collected through Google and Google Scholar, Dissertation Abstracts, web sites of key 
academic institutions and authors and web sites of major environmental evaluation conferences. 
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To better insure the homogeneity of the sample, studies have to meet three selection criteria to be included 
in the sample of this MA: i) only studies with primary results were included to avoid double counting (no 
literature reviews)9, ii) only studies using an LCA approach were included 10, iii) only LCA studies on the 
following liquid transportation fuels were included: lignocellulosic ethanol, FT diesel, microalgae HVO and 
FAME11, iv) only studies assessing Global warming impact indicator (i.e. GHG emissions) with "Well To 
Tank" (WTT) or "Well To Wheel" (WTW) boundaries12. The proxy used to measure the GHG emissions has 
to be the expressed (or easily convertible) in term of grams of CO2 equivalent per MJ of biofuel.  
 
Moreover, no a priori filter was used concerning the type of publication (published or unpublished papers) 
but the date and the English language. This MA focuses on studies conducted since 2002 (until mid 2011) 
since, to our knowledge, no advanced biofuels LCA studies were conducted before this date. 
 
At the end of this selection process, the database contains 47 LCA studies [4,5,41–84] providing 593 
estimates of life-cycle GHG emissions of advanced biofuels. Details of number of estimates by studies 
included in the sample are provided in Table 2 (see Table B.1 in Appendix B for details about selected 
studies). 
 

3.1.2 Choice and description of the meta-variables 
 
The object of this MA is twofold. 
First, this MA proposes a statistical summary of the role of different determinants for estimates of the e-s, i.e. 
the Global warming impact indicator for advanced biofuels in grams of CO2eq per MJ. By identifying and 
measuring the influence of these determinants, one may obtain a more in-depth explanation of how 
advanced biofuel LCA GHG emission estimates change as these factors vary. Second, an important aspect 
of this article is to provide average estimates of the Global warming impact indicator for advanced biofuels.  
The dependent (e-s) and independent variables (potential factors) of this MA are now detailed. 
 

3.1.3 The Effect-Size: the dependent variable 
 
As mentioned before, the variable of interest, so-called effect-size (e-s) or dependent variable, is the result 
for GHG emissions per MJ of biofuel calculated with an LCA approach. Those estimates drawn from 
studies, i.e. the observations of our MA sample, are expressed in different units of measure. These values 
need to be converted in a way that allows them to be combined to constitute the meta-dependent variable. 
The transformation of the dependent variable observations into a unique metric measure is a common 
procedure of MA studies. This step is called the e-s calculation and is central to MA literature. Indeed, it is 
this conversion of the dependent variable in a standard measure, the e-s, that allows to compare previous 
results and to investigate their determinants. In our sample, most of the studies present the GHG emissions, 
in grams of CO2 equivalent, as a midpoint impact category using IPCC's characterization factors. Some other 
studies present only inventory data on GHG emissions so these results had to be converted into grams of 
CO2 equivalent. We used the latest IPCC characterization factors [85] for these conversion steps. It was not 
possible to harmonize all of the observations by using the IPCC's 2007 characterization factors because the 
decomposition in individual GHG emissions were not always presented. However it has been shown that the 
calculation method for global warming impact has an insignificant influence in LCA results [86,87]. 
 

                                                 
9 The MA literature distinguishes primary studies from secondary ones. Compared to the latter, the former presents original 
research results. Litterature reviews are the typical example of secondary studies. In order to avoid double counting, only results 
drawn from primary studies are included in a meta-database. 
10 Only studies following the ISO 14044 guidelines to conduct an LCA were included [20] 
11 Studies on other biomass derived fuels such as methanol, DME, ETBE, biogas, heat, power, CHP were not included. 
12 To be more precise, only the WTW studies with consumption of pure biofuel (E10, B10, etc) have been included. No study with 
a bi-functional unit was included. 



15 
 

However, there is still another step in the calculation of the e-s since the LCA results are not always 
presented for the same functional unit. Typical functional units in biofuel LCA studies are a unit of fuel 
produced (liter, kg, MJ, etc.) or the service rendered by the biofuel (dislocation of a vehicle for a certain 
distance expressed in km, miles, etc.). Some other studies present their results using other less conventional 
functional units such as the surface of arable land used. All of these choices depend on the initial goals of 
the study. 
We choose to convert the GHG emission values in our database into a common functional unit, a MJ of fuel 
produced since this is the unit used in the RED (the RFS also presents results for biofuel energy content, in 
Btu). For a given study, we apply conversion factors using the provided information in the study for lower 
heating values (LHV), densities, engine fuel consumption, etc. Whenever these values did not appear in a 
study, information from a well-documented study was used [88]. Some studies had to be discarded because 
results were presented for a functional unit that could not be converted into a MJ (e.g. Melamu et al. [89]. is 
a C-LCA study where the results are presented for a multi-functional unit, involving fuel and electricity 
production). 
 
Lastly, a standard error is associated to every observation in order to be able the treatment of our sample for 
heteroskedasticity. As mentioned before, there are mainly two ways to treat uncertainty in LCA (and 
consequently estimate standard errors): Monte-Carlo analysis and sensitivity analysis. The standard error 
could be directly inserted in the database only for the observations from studies performing Monte-Carlo 
analysis. We calculated a standard error from the e-s variance of each sensitivity analysis performed (one 
study can present the sensitivity of LCA results for variations of more than one parameter, each performed 
separately). For the studies that did not assess the uncertainty of their results, we calculated the standard 
error based on all the available observations for a same type of fuel. 
 

3.1.4 The potential factors: the independent variables 
 
There are no guidelines concerning exactly which variables, potentially influencing LCA results, have to be 
included in a MA independent variable set. Like any other scientific investigation, this choice is determined 
by the available data [37], LCA practitioner knowledge (see section 2.1) and the specificities of each 
technology (see Appendix A). Some non-intuitive variables are also included in the database. In addition, 
some study characteristics (country, year of publication, etc.) were included to account for potential 
publication biases.  
 
Primary studies highlight different determinants of advanced biofuel GHG emission estimates whereas 
surveys offer a more in-depth discussion on their likely influences. According to the introduction of this 
section, three categories of potential determinants of GHG emission estimates are kept: technical data, 
methodological choices of authors and typology of the study under consideration. The latter variables are 
more particularly based on typical variables employed in previous MA.  
 
The three categories of explanatory variables are broken down further as follows. Each category could be 
divided into subcategories (see Table 1). Those subcategories could gather from 2 to 18 variables. All 
variables are encoded either as binary – a.k.a. dummy or qualitative – variables or as quantitative variables. 
At present, more than 80 variables are available in the database. 

 



16 
 

Table 1 - List of categories and subcategories of variables included in the database  
Technical data Methodological choices Typology of the study
Type of biofuel
Type of biomass feedstock
Type of coproducts
Type of technologies and associated yields
Geographical location of the case study

Type of LCA approach
System boundaries
Method for taking into account coproducts
Carbon neutral
Characterization method for impact assessment
Method for assessing N2O emission from N input
Method for taking into account Land Use Change
Method for taking into account uncertainties
Number and type of environmental impact indicator 
assessed in the study

Type of study
Year of publication
Geographical location of authors

 
 

A brief description of all subcategories for all categories follows (See Table B.2 in Appendix B for a 
comprehensive variable description and their respective name): 
 
Technical data. The type of biofuel (Biomass To Liquid, Ethanol, Fatty Acid Methyl Ester or Hydrotreated 
Vegetable Oil) as well as the biofuel generation (G2 biofuel for BtL and Ethanol; G3 biofuel for FAME and 
HVO) are set as variables.  
In the "type of biomass feedstock" category, due to the variety of feedstock used for biofuel production in 
our sample, we created groups for biomass having similar characteristics (e.g. poplar and eucalyptus are 
coded as farmed wood, corn stover and wheat straw are coded as agricultural residues, etc.). An additional 
variable was created in order to test the difference of using cultivated resources (energy crops and farmed 
wood) and waste / residues as feedstock (biomass from agricultural or forestry residues) on LCA results.  
 
In the "type of technologies and associated yields" category, all different types of processes for biomass 
pretreatment and for conversion into fuel that we found in the literature were set as variables for BtL and 
Ethanol technologies. The "Mass yield provided" variable indicates if a value for a mass yield of the biofuel 
process unit is available in the study (this can be seen as a quality indicator for a given study) and the "Value 
of mass yield" indicates this value only for G2 biofuels. For G3 biofuels, we choose the daily productivity 
and the oil content of microalgae as quantitative variables since they have been often identified in the 
literature as the most influencing factors for life cycle GHG emissions of G3 biofuels. In addition, the fact to 
grow microalgae in open ponds or photobioreactors is set as a variable. 
 
Methodological choices. All classical methodological choices for LCA are set as variables. We differentiate 
LCA studies with an attributional approach from LCA studies with a consequential approach (see section 
2.1) 
Some hypothesis relative to system boundaries are set as variables: we distinguish WTT from WTW studies 
and the inclusion, or not, of infrastructures within the system boundaries is also taken into account.  
As highlighted in Section 2.1, the methods used to account for coproducts can have a great influence in 
biofuel LCAs. Therefore they were also set as independent variables. We classify the observations as either 
using an allocation method (based on energetic, mass content, market value, etc.) or system expansion 
method. Some studies mix both methods, which we call hybrid method.  
The carbon-neutrality hypothesis is very common in G1 and G2 biofuel studies. However, this hypothesis is 
not straightforward for studies involving microalgae since they do not always capture CO2 directly from the 
atmosphere. CO2, from flue gas for example, is generally fed into the system. Therefore, the carbon-
neutrality hypothesis is set as an independent variable for G3 biofuels.  
To study the influence of the choice of a characterization method for impact assessment, we make a 
distinction between studies that take into account 3 GHGs (CO2, CH4, N2O) and studies that take into 
account more than 3 GHGs.  
As also mentioned in Section 2.1, N2O emissions from the field play an important role in the GHG 
emissions of biofuel lifecycles. The use of IPCC's method [29] or other more complex methods for 
estimating these emissions are set as independent variables. 
Studies that take into account direct or indirect or both Land Use Change for GHG emission calculation are 
also identified. The method for taking into account uncertainties is identified in each study: uncertainty 
analysis could be conducted by a Monte Carlo analysis or by a sensitivity analysis on specific factors 
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(ceteris paribus) or no uncertainty analysis (recall section 2.1). We also try to identify if the fact that a study 
assess other environmental impacts than GHG emissions could influence the GHG emission results. So the 
number and type of environmental impact indicators assessed in the study is controlled. 
 
Study typology. Other aspects than technical data or methodological choices are included in the database. 
The type of study is identified: it could be peer review literature or official report or legislative text 
(Directive or Standard) or working paper. The year of publication as well as the geographical location of the 
authors is also included in the database. 
 

3.2 Description of the database 
 
This MA covers a large portion of studies that explicitly used LCA to evaluate environmental impacts of 
advanced biofuels. Finally, 47 LCA studies have been selected representing 593 observations of GHG 
emission results representing an average of 13 observations per study (see Table 2). 
 
Table B.1 displays a list of the studies selected for the MA as well as a description of some of their 
characteristics. 
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Table 2 - List of selected studies for the MA with a description of some of their characteristics (* MC=Monte Carlo analysis, 
SA=sensitivity analysis; ** PR= Peer review, OR= Official Report, Dir.= legislative text (Directive or Standard), WP= Working 

Paper) 
Study # of 

Obs.
Year E-S

(mean in 
gCO2eq/MJ)

Type of biofuel 
generation

Type of LCA 
approach

Uncertainty 
analysis? 
(method)*

LUC? Type of Study
(PR, OR, Dir., 

WP)**

Geographical 
location of 

authors
Bai et al. (2010) 2 2010 27.36 G2 (Ethanol) A-LCA No No PR Europe
Batan et al. (2010) 14 2010 -55.43 G3 A-LCA Yes (SA) No PR North America
Campbell et al. (2010) 6 2010 -9.42 G3 A-LCA No No PR Other
Cherubini et al. (2011) 6 2011 41.07 G2 (Ethanol) A-LCA No No PR Europe
Choudhury et al. (2002) 3 2002 25.03 G2 (Ethanol & BtL) A-LCA Yes (MC) No WP Europe
Delucchi (2006) 4 2006 39.64 G2 (Ethanol) A-LCA No Yes WP North America
Dussault et al. (2010) 7 2010 -19.29 G2 (Ethanol) A-LCA No Yes PR North America
Elsayed et al. (2003) 1 2003 13.00 G2 (Ethanol) A-LCA No No WP Europe
Fazio & Monti (2011) 15 2011 16.80 G2 (Ethanol & BtL) A-LCA No No PR Europe
Gonzales-Garcia et al. (2009a) 8 2009 114.96 G2 (Ethanol) A-LCA Yes (SA) No PR Europe
Gonzales-Garcia et al. (2009b) 1 2009 35.39 G2 (Ethanol) A-LCA No No PR Europe
Gonzalez-Garcia et al. (2009c) 1 2009 -9.99 G2 (Ethanol) A-LCA No No PR Europe
Groode et al. (2007) 4 2007 9.75 G2 (Ethanol) A-LCA Yes (MC) No WP North America
Haase et al. (2009) 2 2009 15.53 G2 (BtL) A-LCA No No WP Europe
Hoefnagels et al. (2010) 90 2010 12.94 G2 (Ethanol & BtL) A-LCA No Yes PR Europe
Hsu et al. (2010) 8 2010 41.89 G2 (Ethanol & BtL) A-LCA Yes (MC) No PR North America
JEC (2007) 6 2007 11.52 G2 (Ethanol & BtL) A-LCA Yes (MC) No OR Europe
JEC (2011) 6 2011 11.77 G2 (Ethanol & BtL) A-LCA Yes (MC) No OR Europe
Jungbluth et al. (2007) 9 2007 61.29 G2 (BtL) A-LCA Yes (SA) No OR Europe
Jungbluth et al. (2008) 22 2008 47.90 G2 (BtL) A-LCA No No OR Europe
Kaufman et al. (2010) 25 2010 24.53 G2 (Ethanol) A&C-LCA Yes (SA) No PR North America
Koponen et al. (2009) 108 2009 43.85 G2 (Ethanol) A-LCA Yes (SA) Yes WP Europe
Lardon et al. (2009) 4 2009 94.00 G3 A-LCA No No PR Europe
Luo et al. (2009) 9 2009 163.84 G2 (Ethanol) A-LCA No No PR Europe
McKechnie et al. (2011) 6 2011 -55.88 G2 (Ethanol) A-LCA No No PR North America
Mehlin et al. (2003) 2 2003 8.28 G2 (BtL) A-LCA Yes (SA) No WP Europe
Mu et al. (2010) 19 2010 -5.33 G2 (Ethanol & BtL) A-LCA Yes (SA) No PR North America
Mullins et al. (2010) 10 2010 41.10 G2 (Ethanol) A-LCA Yes (MC) Yes PR North America
RED (2009) 10 2009 12.80 G2 (Ethanol & BtL) A-LCA No No OR/Dir. Europe
RFS2 (2010) 12 2010 20.67 G2 & G3 C-LCA Yes (MC) Yes Dir. North America
Sander et al. (2010) 1 2010 -18.40 G3 A-LCA No No PR North America
Schmitt et al. (2011) 3 2011 49.62 G2 (Ethanol) A-LCA No No PR North America
Sheehan et al. (2004) 1 2004 -81.28 G2 (Ethanol) A-LCA No Yes PR North America
Spatari et al. (2005) 2 2005 18.94 G2 (Ethanol) A-LCA No Yes PR North America
Spatari et al. (2009) 34 2009 -2.69 G2 (Ethanol) A-LCA Yes (MC & SA) Yes PR North America
Spatari et al. (2010) 6 2010 -7.93 G2 (Ethanol) A-LCA Yes (MC) Yes PR North America
Stephenson et al. (2010a) 17 2010 12.12 G2 (Ethanol) A-LCA Yes (SA) No PR Europe
Stephenson et al. (2010b) 31 2010 201.15 G3 A-LCA Yes (SA) No PR Europe
Stichnothe et al. (2009) 18 2009 33.98 G2 (BtL) A-LCA Yes (SA) No PR Europe
Stratton et al. (2010) 23 2010 24.60 G2 & G3 A-LCA Yes (SA) Yes WP North America
van Vliet et al. (2009) 5 2009 -15.78 G2 (BtL) A-LCA No No PR Europe
Vera-Morales et al. (2009) 4 2009 55.75 G3 A-LCA No No WP Europe
Wang et al. (2010) 3 2010 13.79 G2 (Ethanol) A-LCA No Yes PR North America
Wang et al. (2011) 3 2011 8.00 G2 (Ethanol) A-LCA No No PR North America
Whittaker et al. (2011) 15 2011 57.50 G2 (Ethanol) A-LCA No Yes PR Europe
Wu et al. (2005) 5 2005 14.72 G2 (Ethanol & BtL) A-LCA No No OR North America
Xie et al. (2011) 2 2011 -59.24 G2 (BtL) A-LCA Yes (MC) No PR North America
Number of studies 47
Number of observations 593
Mean and repartition
(weighted by observations)

2009 34.45 G2 (87%) of which 
BtL (26%) and 

ethanol (61%), G3 
(13%)

A-LCA (97%),   
C-LCA (3%)

MC (10%), SA 
(38%), no 
uncertainty 

analysis (52%)

LUC (51%), 
no LUC 
(49%)

PR (65%), OR 
(12%), Dir. 
(4%), WP 

(19%)

North America 
(45%), Europe 
(53%), Other 

(2%)
Mean and repartition
(weighted by studies)

13 2009 23.07 G2 (87%) of which 
BtL (38%) and 

ethanol (70%), G3 
(17%)

A-LCA (98%),   
C-LCA (4%)

MC (21%), SA 
(26%), no 
uncertainty 

analysis (53%)

LUC (28%), 
no LUC 
(72%)

PR (65%), OR 
(12%), Dir. 
(4%), WP 

(19%)

North America 
(45%), Europe 
(53%), Other 

(2%)
Median 
(weighted by studies)

6 2010 15.53
 

 
 
As displayed in Table 2, the database contains 87% of studies assessing G2 biofuels (38% of studies 
assessing BtL and 70% Ethanol) and 17% of studies assessing G3 biofuels. Thus, among 593 observations 
included in the database, observations for G3 biofuels represent 13%. Other observations correspond to G2 
biofuels of which 30% are BtL and 70% are Ethanol. Most of studies are based on attributional LCA 
approach; only 3% of observations are calculated with a consequential LCA approach. Half of the studies do 
not perform an uncertainty analysis on their results. Among studies that include an uncertainty analysis, 44% 
are performing a Monte Carlo analysis. Only 28% of studies included in the database take into account LUC 
(and only 4% are addressing Indirect LUC issues), representing 51% of the observations. Observations 
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extracted from peer review literature represent 61% of observations (65% of studies), from the official 
reports 9% (12% of studies), from regulatory texts 3% (4% of studies), and from working paper 25% (19% 
of studies). 
  
 
Furthermore, the number of studies assessing GHG emissions of advanced biofuels started to strongly grow 
since 2007 (see Figure 2). This phenomenon could be linked with the publication of legislative texts in the 
EU and the US regarding mandatory GHG emission savings threshold for biofuels (respectively RED in 
2009 and RFS2 in 2010). 
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Figure 2 - Cumulative number of studies and observations per year of publication 

 
 

3.2.1 Observations per type of biofuels 
 
As depicted in Figure 3 (see also Table 3), GHG emission mean for G3 biofuels is quite similar to GHG 
emissions for fossil fuel reference as defined in EU and US regulations (respectively 83.8 g CO2eq/MJ 
(same reference for gasoline and diesel) and 92.5 g CO2eq/MJ (mean of US gasoline and diesel references)). 
GHG emission mean value indicates that G2 biofuels could induce a GHG emission reduction compared to 
fossil fuel reference from 69% to 72% (depending on the fossil fuel reference chosen). So, from a statistical 
point of view, G3 biofuels seem to emit more GHG emissions during their life cycle than G2 biofuels. In the 
same way, GHG emission mean for BtL is lower than for Ethanol (GHG emission savings compared to 
fossil fuel reference from 77% to 79% for BtL and from 65% to 68% for Ethanol).  
 
The range of GHG emission results for G3 biofuels is very wide compared to the one for G2 biofuel as 
illustrated by their standard deviations (see Table 3). Hence G3 biofuel could emit 20 times more GHG 
emissions than fossil fuel reference whereas G2 biofuel could emit from 4 to 9 times more by considering 
the maximum variation of the results. Conversely, all minimum results are negative and quite similar for G2 
and G3 biofuels. 
 
Even if LCA results are inconclusive regarding GHG emission performances of advanced biofuels because 
of a wide range of variation, some trends can be indentified: on average, GHG emissions for G3 biofuels are 
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higher than for G2 biofuels and GHG emissions for Ethanol are higher than for BtL. Thus, the type of 
biofuel seems to be a variable that could explain the differences of GHG emission results for advanced 
biofuels.  
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Figure 3 – Dispersion of LCA GHG emission results included in the database for the different types of biofuel 

 

3.2.2 Observations per regions 
 
We make the distinction between the geographical location of the authors (affiliation of the first author) and 
the geographical location of the cases studies (i.e. geographical location of inventory data).  
Regarding the geographical location of the authors, 45% of studies are from North American (NA) authors 
(including US and Canada) and 53% are from European authors (including EU countries and Switzerland), 
representing 32% and 67% of the observations respectively (see Table B.3 in Appendix B). The other study 
is from Australian authors [43]. For G3 biofuels, 42% of observations are from NA authors, 51% from 
European authors and 7% from Australian authors. For BtL, 23% of observations are from NA authors and 
77% from European authors. For Ethanol, 34% of observations are from NA authors and 66% from 
European authors. In most of the studies, the geographical location of the authors fits with the geographical 
location of the assessed pathways. Only 3% of the observations do not match ([63] and some observations of 
[54]). Therefore, we focus only on the geographical location of the authors as a measure of the potential 
influence of geographical location on GHG emissions. 
 
 
On average for all types of biofuel, GHG emission results from NA authors seem to be lower than from 
European authors with a gap that could be significant as illustrated in Table 3 (e.g. from 0.22 g CO2eq/MJ 
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for NA to 150.63 g CO2eq/MJ for Europe for G3 biofuels). Hence, it seems that the geographical location of 
the authors can have an influence on the GHG emission variability observed for advanced biofuels. 
 
 
Table 3 – Statistical description of GHG emission results included in the database for the different types of biofuel and for 

the different geographical location of authors (* expressed in g CO2eq/MJ) 
Mean*

[Confidence Interval] Min Max 5th 95th
All 593 21.60 34.45

[27.26;41.64]
89.34 -142.18 1377.90 -37.08 116.65

North America 198 (33%) 12.61 4.72
[-1.24;10.68]

42.78 -142.18 193.20 -79.66 55.40

Europe 401 (68%) 26.05 48.47
[38.53;58.41]

101.54 -88.36 1377.90 2.44 144.68

All 77 31.00 88.87
[41.55;136.19]

211.85 -96.47 1377.90 -85.00 332.20

North America 38 (49%) 17.99 0.22
[-21.62;22.05]

68.67 -96.47 193.20 -89.89 134.98

Europe 45 (58%) 61.86 150.63
[76.58;224.68]

253.44 -30.97 1377.90 8.69 676.39

All 516 20.50 26.33
[22.43;30.23]

45.20 -142.18 518.40 -24.00 85.80

North America 160 (31%) 12.41 5.79
[0.51;11.08]

34.12 -142.18 71.00 -60.07 49.47

Europe 356 (69%) 24.25 35.56
[30.72;40.39]

46.55 -88.36 518.40 1.00 100.76

All 155 14.50 19.04
[13.41;24.68]

35.78 -142.18 189.00 -18.50 69.05

North America 36 (23%) 6.10 -1.55
[-12.67;9.57]

34.05 -142.18 47.61 -54.08 32.15

Europe 119 (77%) 15.80 25.28
[19.16;31.39]

34.03 -88.36 189.00 2.11 85.76

All 361 24.30 29.45
[24.46;34.45]

48.39 -113.60 518.40 -25.56 89.78

North America 124 (34%) 15.39 7.93
[1.95;13.91]

33.97 -113.60 71.00 -61.12 49.99

Europe 237 (66%) 30.87 40.72
[34.22;47.21]

50.99 -42.00 518.40 1.00 104.55

Biofuel 
generation

Location of 
authors

# of Obs. (%) Median* Standard 
deviation

Extrema* Percentiles*

G2-Ethanol

G3 & G2

G3

G2

G2-BtL
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Figure 4 - Dispersion of LCA GHG emission results included in the database for G2 biofuels and for the different 

geographical location 
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Figure 5 – Dispersion of LCA GHG emission results included in the database for G3 biofuels and for the different 

geographical location 
 
Figure 4 and Figure 5 presents the dispersion of GHG emission results included in the database for the 
different types of biofuel and for the different geographical locations. These results are also compared with 
their respective GHG emission minimum threshold depending on their geographical location. 
 
As already mentioned, the RED and RFS2 set minimum GHG emission savings for biofuels. Their more 
restrictive savings are set to 60% compared to their corresponding fossil fuel reference (fossil fuel reference  
are slightly different). According to Figure 3, 82% of GHG emission results from NA are compliant with 
their more restrictive GHG emission minimum threshold whereas only 59% from Europe are compliant with 
their corresponding threshold. At this stage of the analysis, we do not have objective reasons explaining this 
systematic difference between NA and EU estimates. It may come from the use of a different set of technical 
variables, for instance, but it may also reveal the existence of a potential publication bias in the literature. 
 
In conclusion, this section based on descriptive statistics allows the formulation of some intuitions about 
factors that could influence GHG emission results for advanced biofuels. The type of biofuels (G2 vs G3 
biofuel, BtL vs Ethanol) and the geographical location (North America vs. Europe) seem to have an 
influence on the variability of GHG emission results for advanced biofuels. However it is not possible to be 
more conclusive and accurate with the descriptive statistics presented in this Section. Descriptive statistics 
and inspection of graphics are very useful and often revelant but remain always vulnerable to subjective 
interpretation. Thus, more objective statistical tests are needed, as those that could be done with MRA. By 
using specific econometrics methods, we believe that a MRA should allow the i) confirmation of our 
intuitions previously identified and ii)  to go further in the explanation of the variability by identifying and 
quantifying the main variation factors. 
 



24 
 

Let us now develop the MRA based on these LCA studies. 
 

4 Results  
 
Compared to narrative literature reviews, the MRA methodology allows us i) to statistically identify main 
drivers of the e-s variability and ii)  to estimate both the direction and the magnitude of their respective 
effects across primary studies under consideration. The logic of MRA is illustrated here by applying this 
methodology to LCA literature evaluating GHG emissions of advanced biofuels. We first present the MRA 
model and its results for various G2 and G3 biofuel sub-samples. Second, we use the technique of benefits 
transfer using meta-regression models to propose a first attempt of harmonization of these LCA results. 

4.1 The meta-regression model 
Simply stated, to review a specific environmental evaluation literature, one must summarize its previous 
results already published on the issue under consideration.  
 
We consider I advanced biofuels GHG emission estimates, the e-s, indexed by (1,...,  )i I=  and assume that 
the "true" e-s value for a given estimate is given by13: 
 

( ) ( )

'

,11,

,   1, ,i i i
KK

y X i Iα β µ= + + ∀ = …       (8) 

 
where iy  is the true e-s, α  is a common factor, '

iX  is a vector that measures characteristics of the biofuel 

case study and of the study under consideration, β  is a vector of parameters to be estimated, and iµ  is 

normally distributed with mean zero and variance ( )2 2
, ,: 0,i i iNµ µτ µ τ∼  

The "true" e-s value, iy , is not observed. Instead, each study provides an estimated e-s, iy , so that: 



( ) ( )

'

,11,

,   1, ,i i i i i i
KK

y y X i Iε α β µ ε= + = + + + ∀ = …     (9) 

where iε  is an error term that is normally distributed with mean zero and variance 

( )2 2
, ,: 0, ,   1, ,i i iN i Iε εσ ε σ∼ ∀ = …  

Thus we allow the "true" e-s and the precision of the estimated e-s, 2
,iεσ  to vary across estimates. The term 

2
,iεσ  is known as the within-variance and varies from study to study. As already mentioned, it is usually 

taken as given and derived from the original estimate. 
Any remaining heterogeneity between estimates is either explainable by the observable differences modeled 
through the moderator variables contained in '

iX  or is random and normally distributed with mean zero and 

variance 2
,iµτ , the between-variance. 

 
If 2

, 0iµτ = , the model is referred to the fixed-effects model, and it is assumed that all heterogeneity in the 

"true" e-s can be explained by differences in study characteristics. If the between-variance is not equal to 
zero, the model is a REM, which is usually referred to a "mixed-effects" model because it contains 
observable "fixed" characteristics in 'iX  as well as a random unobservable component with mean zero and 

variance 2
,iµτ . The unknown variance can be estimated by an iterative (restricted) maximum likelihood 

process or, alternatively, using the empirical Bayes method, or a non-iterative moment estimator. 
Note that the meaning of the adjectives "fixed" and "random" in the MA literature is different from the usual 
interpretation for panel data models in standard econometrics, because they refer to assumptions about the 

                                                 
13 The following presentation is partly inspired from Ready [114]. 
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underlying population e-s [38]. In standard econometric terms, the fixed-effects meta-estimator is equivalent 
to the weighted least squares (WLS) estimator using the estimated variances (derived in the primary studies) 
as weights and re-scaling the standard errors of the meta-regression by means of the square root of the 
residual variance. The random effects estimator is akin to a random coefficient model in which the within- 
and between-study variances are used as weights [90]14. 
 

4.2 Meta-regression analysis results 
Since the studies in the primary literature may use different data sets and different ways of modeling, we 
have good reasons to suspect the heteroskedasticity. 
 
A common approach is to use White's Heteroskedastic-Consistent Covariance Matrix (HCCM). This 
estimator simultaneously corrects for heteroskedasticity and cluster autocorrelation, and hence accounts for 
the multiple data setup by allowing different variances and non-zero covariances for clusters of 
measurements from the same study. However, the White estimator is arguably rather restrictive assuming 
that all differences across observations and studies are observable and can entirely explain the empirical 
heterogeneity. In addition, the White estimator does not fully exploit all available information because it 
estimates the variance rather than taking it as given or recoverable from the primary studies. 
The latter can be remedied by using the fixed-effects meta-estimator that we already presented. As explained 
above, 2

,iεσ  is a sample estimate of the standard deviation of the meta-regression errors. When this kind of 

measure of the heteroskedasticity is available, then Weighted Least Squares (WLS) becomes the obvious 
method to obtain efficient estimates of eq. (9). 
 
We start out by presenting the results obtained for the "whole" sample, which includes all the G2 and G3 
biofuel studies included in the meta-database. Recall that our meta-database includes variables representing 
i) technical data/characteristics, ii)  author's methodological choices and iii)  typology of the study under 
consideration. As technical data are specific to each type of biofuel, it is not possible to include this set of 
variables in the "whole" sample in order to test and quantify their respective influence. In order to capture 
characteristics of each biofuel generation and the type of fuel analyzed, one needs to break the "whole" 
sample into these respective sub-samples. The subsequent sections present then results for smaller samples 
named as follows: "G3”, "G2" samples and then "G2-BtL" and "G2-Ethanol" sub-samples. Hence, the 
"whole" sample corresponds to the merge of our "G3" and "G2" samples. Note that the "G3" and "G2" 
samples have been cut to 90% in order to exclude outliers which may have spurious influence on 
econometric estimates, as it is usually done in applied econometrics. So-defined, the "G2" sample contains 
464 observations (321 for Ethanol and 143 for BtL) and the "G3" sample contains 69 observations. (See 
Figure 4 and Figure 5 for a visual representation of "G2" and "G3" samples outliers). "G2-BtL" and "G2-
Ethanol" sub-samples are a subset of the "G2" sample.  
 
Results of eq. (9) are presented in Table 4 for the "whole" and "G2" samples, and Table 5, Table 6 and Table 
7 provide results for the "G2-Ethanol”, "G2-BtL" and "G3" sub-samples respectively. For each model, 
results are systematically reported for two different corrections for heteroskedasticity: the first estimator 
uses the White's Heteroskedastic-Consistent Covariance Matrix (HCCM) (as denoted by the number 1 in 
columns) and the second one uses Weighted Least Squares (WLS) using inverse standard error weights (as 
denoted by the number 2 in columns). 
 
Unless it is indicated, all regression results are presented in reduced form. These models were chosen by the 
general to specific approach to econometrics modeling. As usual, "***", "**" and "*" respectively indicate 
1%, 5% and 10% significance levels and standard errors of the coefficient estimates are reported into 
brackets. In each column, "-" means that the variable under consideration has been first included but finally 
removed from the reduced form because its coefficient estimate was not statistically significant at the 10% 
significance levels. Regarding model information, N and Mean dep. Var indicate respectively the number of 

                                                 
14 Thompson & Sharp [115] provide an overview of various estimators that allow for random-effects variation. 
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observations used to perform each regression and the corresponding mean of the dependent variable, i.e. the 
mean e-s expressed in g CO2eq/MJ of biofuel. 
In all tables, the quality of regressions is checked through the following diagnostic tests. Given that the 
simple R-squared statistic is sensitive to the number of variables included, only the adjusted R-squared is 
reported (Adj. R-squ.). The overall fit of the regression model is assessed by the logarithm of the Likelihood 
(Log-Likelihood) and the standard Fisher test which test for joint significance. The statistic of the latter test 
(F-stat.) and the corresponding measure of its statistical probability (P.value) are systematically reported. 
The null hypothesis of this test is all coefficients but the constant one is equal to zero. Two additional 
diagnostic tests for the quality of the regressions (and their P. values) are also reported: the Skewness's 
asymmetric test (Skewness) and the Kurtosis's normality test (Kurtosis) of residuals. They respectively 
correspond to a test of skewness and nonnormal kurtosis compared with the null hypothesis of symmetry 
(the skewness coefficient is zero for symmetrically distributed data) and kurtosis coefficient of 3. The 
normality tests examine the normality of the residuals. Nonnormal residuals invalidate hypothesis tests on 
individual variables as these tests assume their normality, and is therefore an important consideration. All 
Tables also report the following two information criteria: the Akaike's Information Criterion (AIC) and the 
Schwarz's Bayesian Information Criterion (BIC). These two standard measures are used to allow (nonnested) 
model comparisons. Smaller AIC and BIC are preferred, because higher Log-Likelihood is preferred. Finally, 
in order to test and hence statistically confirm the importance of including technical data/characteristics in 
our models, it has been chosen to perform a likelihood-ratio test. The statistic of this test (LR test) and its 
corresponding P. value are reported in Table 5, Table 6 and Table 7. The line Nested model indicates against 
which model the investigated model is tested. In econometric terms, the nested model is the restricted model 
and corresponds to the reduced model without any technical data/characteristics. 
 
We turn now to the comments of the results obtained for each samples and sub-samples. We only focus on 
the signs and significance of the estimated coefficients since the absolute magnitudes of those coefficients 
are not important. 
 

4.2.1 Results for the whole sample 
Estimates results for the "whole" sample are presented in Table 4, columns (1aAll) and (2aAll). Eq. (9) is 
estimated using both the White's HCCM (column (1aAll), Table 4) and the WLS (column (2aAll), Table 4) 
estimators. Contrary to economic primary studies, variances are usually not reported for each estimate in 
LCA primary studies and have to be retrieved (recall Section 3.1.3). For each observation of the MRA, 
variances have been directly inserted in the database or calculated depending whether the observations were 
coming from primary studies performing Monte-Carlo analysis or sensitivity analysis, respectively. As a 
consequence, the database does not provide a single measure of the variance for each observation. For this 
reason we prefer to comment coefficient estimates obtained by OLS estimator with a White procedure – 
OLS (White's HCCM), as indicated in last line, Table 4, – rather than WLS. However, we let WLS estimates 
for robustness check since they yield to similar results. The same choice is applied to the remainder of the 
paper to simplify the exposition. 
 
Thus, we only comment results presented in column (1aAll), Table 4. 533 observations are included in this 
regression. As already explained in the previous Section, this regression only aims at testing the influence of 
i) the type of biofuels (gen_3, etha and btl variables) and ii)  the geographical location (zlab_us, zlab_eu and 
zlab_other) on the e-s in order to confirm or deny what have been highlighted with the visual inspections 
presented in Sections 3.2.1 and 3.2.2. This may explain the rather low level of the adjusted R-squared (about 
16%). As judged by the F-stat. P. value, the joint significance of results is accepted at the 1% significance 
level.  
 
As a first comment, the econometric results displayed in Table 4 tend to confirm intuitions presented in 
Section 3.2, which were based on a simple visual inspection. etha and btl variables are indeed statistically 
significant at the 1% level and their coefficients are negative. According to these parameter estimates, GHG 
emissions are statistically lower for Ethanol and BtL (G2 biofuels) than for G3 biofuels (gen_3) by 
respectively about 41 and 52 g CO2eq/MJ. These results also confirm that life cycle GHG emission 
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performance is better for BtL than for Ethanol. One can effectively not merge the etha and btl variables, as 
indicated by the Wald Test: we effectively reject the null hypothesis of this test, 0H , because 

.   0.01P Value <  and conclude that the coefficient of etha is statistically different from the one of btl. 
Hence the biofuel generation is a key variable to explain the variability of advanced biofuels LCA results. 
 
Regarding the geographical location, zlab_us and zlab_other variables have a negative impact on GHG 
emissions – their coefficients are significant at the 1% level. According to these results, GHG emissions are 
statistically lower when studies are from NA or from other countries (excluding NA and Europe) compared 
to those from Europe. Hence, the geographical location appears to have an influence on GHG emission 
results for advanced biofuels. There is no intuitive reason to explain the geographical influence highlighted 
by our results. At this step of the analysis, this result could be explained by either a model misspecification 
or the existence of a publication bias. The former could correspond to missing variables in our database, 
hence the geographical location could be a shadow variable hiding a real determinant. For instance, the 
geographical location variable could hide a set of technical data specific to one location. Unfortunately, it is 
not possible to include such variables in the "whole" sample model. To test this hypothesis, the "whole" 
sample is thus divided into G3 biofuel sample and G2 biofuel sample in order to assess specific 
characteristics (including technical data) of each biofuel generation. 
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Table 4 – Results of MRA for the econometric samples Whole and G2 biofuels 
Samples Whole Whole G2 G2 G2 G2
Model 1aAll 2aAll 1aG2 2aG2 1bG2 2bG2
Constant 76.27***

(13.64)
271.74***
(23.66)

20.32***
(3.43)

27.24***
(4.72)

21.14***
(3.61)

28.43***
(5.04)

Technical data
gen_3 (ref for Whole)
etha -41.39***

(13.14)
-220.92***

(23.77)
5.84***
(1.91)

- 5.83***
(1.81)

-

btl (ref for G2) -52.12***
(13.36)

-215.57***
(22.59)

mat_cult -9.47***
(2.21)

-11.56***
(3.02)

mat_cultxdluc -7.94***
(2.46)

-13.67***
(3.23)

Methodological choices
lca_att (ref)
lca_cons -33.66***

(4.79)
-40.41***

(8.63)
-34.04***

(4.9)
-39.09***

(8.37)
copval_alloc 8.96***

(1.91)
8.82**
(3.62)

8***
(1.94)

6.99*
(3.84)

copval_systexp (ref)
copval_hyb 5.25**

(2.38)
- 5.41**

(2.69)
-

luc_dir - -
luc_indir 29.97***

(6.32)
39.78***
(7.27)

29.62***
(6.34)

36.54***
(7.2)

uncer_MC 8.03**
(3.45)

16.68***
(4.61)

8.04**
(3.41)

17.25***
(4.58)

uncer_SA 7.78***
(2.4)

7.08*
(3.63)

7.32***
(2.39)

6.69**
(3.39)

uncer_ref (ref)
impcat_nev 9.26***

(2.99)
- 7.71***

(2.71)
-

impcat_nrc -15.01***
(2.36)

-7.31**
(3.41)

-12.65***
(2.54)

-

impcat_other - - 0.84*
(0.49)

-

impcat_gwponly (ref)
Typology of the study
zlab_us -24.6***

(3.97)
-190.58***

(25.05)
-8.32***

(2.1)
-18.58***

(3.66)
-8.66***
(2.12)

-19.73***
(3.2)

zlab_eu (ref)
zlab_other -85.69***

(15.6)
-281.16***

(24.85)
Model information
N 533 533 464 464 464 464
Mean dep. Var. 28.64 17.62 24.15 25.04 24.15 25.01
Adj. R-squ. 16.30% 68.76% 37.26% 30.95% 38.33% 30.94%
Log-Likelihood -2727.20 -3068.04 -1976.89 -2044.50 -1972.36 -2044.03
F-stat.
(P. value)

18.93
(0,0000)

32.82
(0,0000)

Skewness 
(P. value) 

61.27
(0,0000)

24.57
 (0.017)

23.56
 (0.0354)

Kurtosis 
(P. value) 

8.75
 (0.0031)

1.6
 (0.2062)

3.06
 (0.0801)

AIC 5464.39 6146.08 3977.78 4113.00 3970.72 4114.05
BIC 5485.79 6167.47 4027.45 4162.68 4024.54 4167.87
Wald Test (P. value) for 
etha=btl

26.29
(0,0000)

0.22
 (0.6409)

Procedure
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS

 
 

4.2.2  Results for the G2 sample 
Estimates results for the "G2" sample are presented in Table 4, columns (1aG2) to (2bG2). Our comments 
are based on results presented in column (1aG2). The adjusted R-squared is now equal to about 37%. 
 
Technical variables 
etha variable is statistically significant at the 1% level and impacts positively GHG emissions for G2 
biofuels. Thus GHG emissions are higher by about 6 g CO2eq/MJ for Ethanol than for BtL. The type of fuel 
conversion technology can thus explain the variability of GHG emission results for G2 biofuels. G2 sample 
is then split into "G2-Ethanol" sample and "G2-BtL" samples in order to take into account specificities of 
each fuel (see Sections 4.2.3 and 4.2.4, respectively). 
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Regarding the influence of mat_cult, this variable was tested first and had a negative effect on GHG 
emissions for G2 (results reported in columns (1bG2) and (2bG2), Table 4). Most LCA studies do not 
account for upstream burdens related to residue production and cultivated feedstock needs more inputs 
(especially fertilizers and pesticides) to be produced [3] so this result was unexpected. However, it is also 
well known that perennial energy crops can stock carbon underground [91]. Therefore, our counter-intuitive 
result can be explained by this fact, but only if direct LUC is accounted for (accounting for above ground 
and underground carbon sequestration). However we noticed that luc_dir variable is not statistically 
significant. Hence, we decided to combine mat_cult variable with luc_dir variable (aggregated in 
mat_cultxdluc) in order to confirm this effect (results reported in columns (1aG2) and (2aG2), Table 4). Our 
meta-model shows that mat_cultxdluc variable is statistically significant at the 1% level and impacts 
negatively GHG emissions for G2 biofuels. It means that GHG emissions for G2 biofuels produced from 
cultivated feedstock that take into account dLUC are lower than GHG emissions for G2 biofuels from 
cultivated feedstock that do not take into account dLUC or from waste feedstock. Thus, the type of 
feedstock combined with the fact to take into account dLUC influence GHG emissions for G2 biofuels.  
 
Methodological variables 
lca_cons variable is statistically significant at the 1% level for "G2" sample. Its coefficient is negative so 
GHG emissions for G2 biofuels are lower with a consequential approach compared to the attributional 
approach. The type of LCA approach thus influences GHG emission results for G2 biofuels. 
 
copval_alloc and copval_hyb variables are statistically significant at the 1% and 5% level, respectively 
(column (1aG2), Table 4). It confirms the influence of the method for taking into account coproducts on 
LCA GHG emission results as often mentioned in the literature [60]. The coefficients of both variables are 
positive which means that GHG emissions are lower for G2 biofuels when using the system boundaries 
expansion method (copval_systexp) compared to allocation method and hybrid method. We observed, 
however, that most LCA authors recognize the importance of the method of taking into account burdens 
associated to coproducts. 91% of the studies in our database test alternative methods for allocation 
performing a sensibility analysis.   
 
luc_indir is statistically significant at the 1% level. It shall be noticed that all studies assessing indirect LUC 
(luc_indir) always assess direct LUC (luc_dir), so luc_indir is equal to 1 when the study assesses both direct 
and indirect LUC. Nevertheless luc_dir is not statistically significant. We can then conclude that assessing 
indirect LUC increases GHG emission results for G2 biofuels as luc_indir coefficient is positive. 
Nevertheless, the direct LUC (luc_dir) has an influence but it is linked with the type of biomass feedstock 
used, as mentioned before. 
 
impcat_nev, impcat_nrc variables are both statistically significant at the 1% level. The type of other 
environmental indicators than GHG emissions assessed in the study thus could influence GHG emission 
results for G2 biofuels. According to our results, GHG emissions are statistically lower when the study 
assesses the Net Energy Value (impcat_nev) and are statistically higher when the study assesses the Non 
Renewable Energy consumption (impcat_nrc). This effect could not have been anticipated. Nevertheless, it 
could be interpreted as a quality indicator for the study: when these energy indicators are consistently 
assessed, the GHG emission result can be considered to be more robust. 
 
Variables related to the methods for taking into account uncertainties (uncer_MC and uncer_SA) are 
statistically significant and impact positively the amount of GHG emissions emitted for G2 biofuels. This 
effect is unexpected. It means that GHG emissions for G2 biofuels are statistically higher when uncertainties 
are taken into account – via Monte Carlo method (uncer_MC) or Sensitivity analysis (uncer_SA) – than 
when there is no uncertainties assessment (uncer_ref). The fact to assess uncertainties could be interpreted 
also as a quality indicator of a study. It can be seen as an effort to establish the accuracy of the results but the 
tendency of the influence of these parameters in the e-s could not be anticipated nor explained afterwards. 
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Typological variables 
Lastly, zlab_us variable has a negative impact on GHG emissions and is significant at the 1% level. Again, 
GHG emissions for G2 appear to be statistically lower when the authors are from North America (zlab_us) 
compared to authors from Europe (zlab_eu). Hence, the geographical location of the authors also influences 
GHG emission results for G2 biofuels. 
 

4.2.3 Results for the Ethanol sample 
Estimates results for the "G2-Ethanol" sample are presented in Table 5. Columns (1cEtha) and (2cEtha) 
correspond to the model without the inclusion of the technical variable that is the mass yield of the pathway 
(g2_mass_yield). Columns (1bEtha) and (2bEtha) test the existence of a linear effect of this variable 
(g2_mass_yield) whereas columns (1aEtha) and (2aEtha) test the existence of a non-linear effect of this 
variable by taking the logarithm of the g2_mass_yield variable (g2_mass_yield_ln). The AIC and the BIC 
both decrease from the first specification (columns (1aEtha) and (2aEtha)) to the last one (columns (1cEtha) 
and (2cEtha)). Therefore, the inclusion of a non-linear effect of the mass yield of the pathway appears more 
relevant to explain GHG emission variations. Thus, we choose to comment results presented in column 
(1aEtha). 
 
Technical variables 
mat_cultxdluc variable is significant at the 5% level and has the same effect on GHG emissions for Ethanol 
as for G2 biofuels (See Section 4.2.2) 
 
The mass yield of the pathway g2_mass_yield_ln impacts negatively GHG emissions for G2 Ethanol, which 
is an intuitive effect: the better the mass yield is, the less GHG are emitted all along the biofuel life cycle, 
ceteris paribus. It should be noticed that g2_mass_yield_ln traduces a non-linear effect of this variable.  
 
We should also mention that variables related to other technical data, such as the type of biomass 
pretreatment, are not statistically significant for Ethanol. Indeed, 83% of observations are related to Ethanol 
produced using dilute sulfuric acid pretreatment and most of these observations use technical data from the 
same study (NREL) [92]. Hence pretretament process variables for Ethanol are not really discriminatory, 
and this could explain why those variables are not statistically significant. 
 
 
Methodological variables 
Among significant variables found for G2 biofuel sample, lca_cons, luc_indir, impcat_nev, impcat_nrc, 
uncer_MC and uncer_SA  variables are also significant for the Ethanol sample and have the same impact as 
described for the G2 sample. So the type of LCA approach, the fact 'to assess indirect LUC', the type of 
other environmental indicators, the method for taking into account uncertainties influence GHG emission 
results for G2 Ethanol. 
 
It can be noticed that copval_alloc and copval_sys variables are no longer statistically significant. This result 
is surprising regarding a previous lignocellulosic Ethanol LCA studies review [13] which concludes that the 
treatment of coproducts has a strong influence in the LCA results.  
 
Typological variables 
 zlab_us variable has a negative impact on GHG emissions and is significant at the 5% level. It means that 
GHG emissions for Ethanol are statistically lower when the authors are from North America (zlab_us) 
compared to authors from Europe (zlab_eu). Hence, the geographical location of the authors also influences 
GHG emission results for Ethanol. 
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Table 5 – Results of MRA for the econometric samples G2-Ethanol biofuels 
Samples Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol
Model 1aEtha 2aEtha 1bEtha 2bEtha 1cEtha 2cEtha
Constant -5.88

(14.8)
31.9

(31.58)
46.39***
(8.33)

37.85***
(13.52)

32.11***
(2.64)

34.07***
(3.95)

Technical data
mat_cultxdluc -7.18**

(3.26)
-10.1**
(4.85)

-6.91**
(3.28)

-9.92**
(4.79)

- -

g2_mass_yield -73.57**
(34.79)

-

g2_mass_yield_sq
g2_mass_yield_ln -23.22**

(9.3)
-

Methodological choices
lca_att (ref)
lca_cons -38.24***

(5.53)
-40.12***
(11.37)

-38.43***
(5.46)

-40.17***
(11.33)

-40.24***
(4.72)

-40.72***
(9.9)

luc_indir 29.01***
(7.49)

35.89***
(8.59)

27.48***
(7.41)

35.07***
(8.43)

19.85***
(7.29)

31.7***
(7.78)

uncer_MC 9.51**
(4.06)

20.32***
(5.83)

9.66**
(4.11)

20.43***
(5.82)

10.06**
(4.23)

18.67***
(5.5)

uncer_SA 12.5***
(3.68)

12.28**
(5.71)

11.53***
(3.59)

11.99**
(5.57)

12.09***
(2.72)

14.01***
(4.08)

uncer_ref (ref)
impcat_nev 12.34***

(3.99)
- 11.05***

(3.99)
- 9.51**

(3.94)
11.15*
(6.49)

impcat_nrc -17.09***
(3.19)

-14.16***
(5)

-17.24***
(3.17)

-14.18***
(5)

-22.53***
(2.51)

-20.14***
(4.08)

impcat_other - - - - -1.09*
(0.61)

-

impcat_gwponly  (ref)
Typology of the study
zlab_us -7.29**

(3.56)
-28.56***

(7.44)
-8.22**
(3.56)

-29.23***
(7.35)

-11.26***
(2.37)

-23.84***
(4.74)

zlab_eu (ref)
Model information
N 209 209 209 209 321 321
Mean dep. Var. 19.70 19.14 19.70 18.96 26.61 26.61
Adj. R-squ. 31.21% 36.31% 30.32% 36.24% 40.13% 37.82%
Log-Likelihood -884.15 -919.42 -885.49 -919.54 -1364.10 -1412.35
F-stat.
(P. value)

12.61
(0,0000)

10.91
(0,0000)

12.55
(0,0000)

10.79
(0,0000)

33.94
(0,0000)

27.19
(0,0000)

Skewness 
(P. value) 

18.14
 (0.0527)

16.84
 (0.078)

18.16
 (0.0333)

Kurtosis 
(P. value) 

0.32
 (0.5729)

0.23
 (0.6351)

AIC 1790.30 1860.83 1792.98 1861.08 2748.21 2844.70
BIC 1827.07 1897.60 1829.75 1897.85 2785.92 2882.42
LR test (P. value)
Nested model: model (c)

959.9
(0,0000)

985.87
(0,0000)

957.22
(0,0000)

985.62
(0,0000)

Procedure
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS

 
 

4.2.4 Results for the BtL sample 
Estimates results for the "G2-BtL" sample are presented in Table 6. Columns (1eBtL) and (2eBtL) 
correspond to the reduced model obtained for the "G2" sample. Columns (1dBtL) and (2dBtL) correspond to 
the new reduced model without any technical variables. Columns (1aBtL) to (2cBtL) correspond to the 
reduced model with technical variables. Columns (1aBtL) and (2aBtl) are the only one to test a non-linear 
effect of the mass yield of the pathway. The AIC and the BIC both decrease from the first specification 
(columns (1aBtL) and (2aBtL)) to the last one (columns (1eBtL) and (2eBtL)). Thus, we choose to comment 
results presented in column (1aBtL). 
 
Technical variables 
mat_cultxdluc variable is significant at the 1% level and has the same effect on GHG emissions for BtL as 
for G2 biofuels (See Section 4.2.2) 
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Variables related to the type of conversion into fuel process (btl_pro_alng and btl_pro_alelec) are 
statistically significant. Using natural gas as a source of heat for an allothermic BtL unit leads to higher 
GHG emissions than producing BtL from an autothermic plant (biomass provides all process energy needs). 
Conversely using grid electricity as a utility for an allothermic BtL unit leads to lower GHG emissions than 
producing BtL from an autothermic plant. The source of electricity used could explain these results. Indeed, 
among the observations using grid electricity as a utility for an allothermic BtL unit, 57% of these 
observations use electricity provided by wind power plants [58]. The other studies do not precise the source 
of electricity used. 
 
The mass yield of the pathway g2_mass_yield_ln impacts negatively GHG emissions for BtL, which is an 
expected effect: the better the mass yield is, the less GHG emissions are emitted all along the pathway for a 
G2 biofuel. It should also be noticed that g2_mass_yield_ln traduces a non-linear effect of this variable.  
 
It should be noticed that variables related to other technical data, such as the type of biomass pretreatment or 
the inclusion of Carbon Capture and Storage (CCS) in the process, are not statistically significant for BtL. 
Indeed, 90% of observations in the econometric sample are related to BtL produced without biomass 
pretreatment (See Table C.4 in Appendix C). Hence pretreatment process variables for BtL are not really 
discriminatory, and this may be the reason why those variables are not statistically significant. Moreover, the 
variable btl_ccs is equal to zero for the econometric sample (See Table C.4 in Appendix C), therefore this 
variable could not have been tested. In fact, the variable in question appears in only three observations and 
all of them are considered outliers (see Table B.8 in Appendix B).  
 
Methodological variables 
Among significant variables found for "G2" sample, only copval_alloc and lca_cons are significant for the 
"G2-BtL" sample. The method for taking into account coproducts (copval_alloc) has the same impact as 
described for "G2" sample (copval_hyb for BtL is equal to zero). However the influence of the type of LCA 
approach is not the same for G2 biofuel and for BtL: GHG emissions are higher with a consequential 
approach (lca_cons) compared to an attributional approach (lca_att). So the type of LCA approach and the 
method for taking into account coproducts influence GHG emission results for BtL.  
 
Furthermore, the type of coproduct influence GHG emission results for BtL since cop_elec variable is 
statistically significant at the 1% level. So the coproduction of electricity for BtL decreases GHG emissions 
compared to other coproducts, ceteris paribus. 
 
Typological variables 
 zlab_us variable has a negative impact on GHG emissions and is significant at the 1% level. It means that 
GHG emissions for BtL are statistically lower when the authors are from North America (zlab_us) compared 
to authors from Europe (zlab_eu). Hence, the geographical location of the authors also influences GHG 
emission results for BtL. 
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Table 6 – Results of MRA for the econometric samples G2-BtL biofuels 
Samples BtL BtL BtL BtL BtL BtL BtL BtL BtL BtL
Model 1aBtL 2aBtL 1bBtL 2bBtL 1cBtL 2cBtL 1dBtL 2dBtL 1eBtL 2eBtL
Constant 43.23***

(12.66)
29.68

(20.05)
70.94***
(9.38)

75.11***
(12.85)

39.6***
(6.29)

32.19***
(6.36)

27.43***
(5.59)

29.03***
(5.69)

16.03**
(6.33)

24.5***
(8.38)

Technical data
mat_cultxdluc -14.41***

(3.08)
-19.53***

(3.27)
-15.41***

(3.11)
-20.33***

(3.23)
-15.16***

(2.93)
-18.1***
(2.84)

-16.24***
(2.47)

-17.02***
(2.6)

-11.64***
(3.98)

-13.28***
(4.46)

cop_elec -44.56***
(4.14)

-35.68***
(7.7)

-43.99***
(4.19)

-35.94***
(7.71)

-19.4***
(5.09)

- - -

g2_mass_yield - -
g2_mass_yield_sq
g2_mass_yield_ln -11.66*

(7.04)
-17.41**
(8.52)

btl_pro_autoth
btl_pro_alng 17.04***

(5.4)
- 17.73***

(5.73)
- 13.85**

(5.6)
-

btl_pro_alelec - - - - - -
btl_pro_alrenew - - - - - -
btl_gasrecycl - - - - - -
Methodological choices
lca_att (ref)
lca_cons 25.61***

(8.36)
- 26.23***

(8.6)
- 22.97***

(8.68)
- 18.1**

(8.87)
- - -

copval_alloc 9.6***
(3.37)

- 9.81***
(3.4)

- 13.73***
(3.05)

12.51***
(4.33)

16***
(2.96)

11.02**
(4.65)

11.7***
(2.79)

13.21***
(4.31)

copval_systexp (ref)
copval_hyb - - - - - - - - - -
luc_indir - - - - - - - - - -
uncer_MC - - - - - - - - - -
uncer_SA - - - - - - - - - -
uncer_ref (ref)
impcat_nev - - - - - - - - - -
impcat_nrc - - - - - - - - - -
impcat_other - - - - - - - - - -
impcat_gwponly (ref)
Typology of the study
zlab_us -21.42***

(4.8)
- -24.38***

(4.71)
-16.37*
(9.57)

-22.11***
(4.35)

-16.59***
(5.51)

-16.51***
(4.09)

-14.91***
(5.03)

-11.41**
(4.93)

-17.34***
(5.29)

zlab_eu (ref)
Model information
N 132 132 132 132 141 141 143 143 143 143
Mean dep. Var. 19.45 21.96 19.45 21.84 18.80 22.29 18.65 22.22 18.65 21.62
Adj. R-squ. 39.48% 26.01% 38.39% 23.56% 35.19% 25.06% 31.39% 25.56% 33.22% 24.68%
Log-Likelihood -548.53 -568.94 -549.72 -571.09 -589.14 -608.32 -603.08 -618.57 -599.04 -617.29
F-stat.
(P. value)

16
(0,0000)

15.66
(0,0000)

11.34
(0,0000)

10.69
(0,0000)

Skewness 
(P. value) 

12.64
 (0.2445)

13.7
 (0.1869)

13.31
 (0.1492)

12.09
 (0.0336)

16.91
 (0.0501)

Kurtosis 
(P. value) 

2.53
 (0.1117)

2.38
 (0.1232)

2.22
 (0.1364)

1.64
 (0.2004)

1.52
 (0.2184)

AIC 1115.07 1155.89 1117.44 1160.18 1194.29 1232.65 1218.17 1249.13 1218.07 1254.57
BIC 1141.01 1181.83 1143.38 1186.12 1217.88 1256.24 1235.95 1266.91 1247.70 1284.20
LR test (P. value)
Nested model: model (d)

109.1
(0,0000)

99.25
(0,0000)

106.73
(0,0000)

94.96
(0,0000)

27.88
(0,0000)

20.49
(0,0000)

8.09
 (0.0882)

2.56
 (0.6336)

Procedure
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS

 
 
We turn now to the analysis of the "G3" sample. 

4.2.5 Results for the G3 sample 
Estimate results for the "G3" sample are presented in Table 7. We begin by commenting the impact of 
g3_productivity and g3_oil as the influence of these two continuous technical variables will determine the 
final specification of the model for the "G3" sample. 
 
Technical variables 
First, a lin-lin model is specified in order to test the linear effects of both g3_productivity and g3_oil on the 
e-s. Table 7, columns (1dG3) and shows the reduced form of this specification. It could be noticed that 
g3_productivity variable is not statistically significant. This result is non intuitive as most part of the 
literature mentions that algae productivity could explain the variability of GHG emission results. The non-
significance of this variable may be explained by the existence of a non-linear effect instead of a linear one. 
To test this hypothesis, two models are specified. In the first one (Table 7, column (1cG3)), the non-linear 
effect is modelled as a second-degree polynomial by introducing the variable g3_productivity and its 



34 
 

squared value (g3_productivity_sq). In the second one (Table 7, column (1bG3)), the linear effect is 
modelled as a logarithmic function by introducing g3_productivity_ln instead of g3_productivity. In Table 7, 
column (1cG3), neither g3_productivity nor g3_productivity_sq are statistically significant at the 10% level. 
On the contrary, g3_productivity_ln is statistically significant at the 1% level (Table 7, column (1bG3)). As 
a conclusion, the variable g3_productivity does have an impact on GHG emission results for G3 biofuels but 
this effect is non-linear which can be captured by a logarithmic function, not a second degree polynomial. 
Regarding g3_oil, results presented in Table 7, column (1bG3) indicates a negative linear influence of this 
variable. Finally only g3_productivity_ln and g3_oil_ln variables are statistically significant at the 1% level 
and their coefficients are both negative (Table 7, column (1aG3)). Thus, we choose to comment results 
presented in column (1aG3). 
 
Algae productivity value and the oil content – as proxies of the g3_productivity and g3_oil variables, 
respectively – influence GHG emission results for G3 biofuels. They have a negative impact on GHG 
emissions so the higher algae productivity or the algae content is, the lower GHG emissions are. In addition, 
these non-linear effects indicate that those parameters are more sensitive for low productivity or low oil 
content than for high ones.  
 
The variable hvo is statistically significant at the 1% level. According to its coefficient estimate, GHG 
emissions for HVO from algae are higher than GHG emissions from FAME from algae by about 134 g 
CO2eq/MJ ceteris paribus. It indicates that the type of fuel conversion technology can explain the variability 
of GHG emission results for G3 biofuels. This result is difficult to be interpreted, especially due to the extent 
of its coefficient. In fact, the literature shows that upstream fossil energy consumption (including all inputs, 
notably methanol and hydrogen production) is similar in FAME and HVO processes [93]15. Vegetable oil 
consumption for both processes is also quite similar. 
 
The coefficient of g3_Oppond is negative and significant at the 1% level. GHG emissions for G3 biofuels 
are thus statistically lower when microalgae are grown in an open-pound than in a photobioreactor. Hence 
the type of technology used for microalgae cultivation influences GHG emission results for G3 biofuels.  
 
The type of technology used for microalgae cultivation, the algae productivity and the oil content of algae 
are often identified as key parameters in G3 biofuel LCA studies. So the fact that those variables are 
statistically significant confirms previous conclusions found in the literature. Jorquera et al. [94], in a 
microalgae LCA study (not included in this review because conversion into biofuel is not included), shows 
that culture in photobioreactors is more energy intensive than in open ponds. One of the conclusions of 
previous literature review on biofuel from microalgae technologies [95,96] is that microalgae strains 
presenting high biomass productivity are better for CO2 emission mitigation.  
 
Methodological variables 
Concerning methodological variables, only lca_cons variable is statistically significant at the 1% level for 
G3 sample. Its positive coefficient indicates that GHG emissions for G3 biofuels are statistically higher 
when the study uses a consequential approach for LCA compared to the attributional approach. Hence the 
type of LCA approach influences GHG emission results for G3 biofuels. However, note that consequential 
LCA approach is only used by one study (that represents 9% of the observations for the econometric 
sample). Consequently the influence of the type of LCA approach for G3 biofuels should be interpreted with 
caution. 
Liu et al. [17], in an LCA harmonization exercise, show that different authors accounted for different 
microalgae coproducts and that it plays an important role in the final life cycle GHG emissions of the 
biofuel. However, in our meta-regression, variables related to the coproducts did not show themselves to be 

                                                 
15 In the EcoInvent database [116], the cumulative fossil energy demand for the production of 1 kg of hydrogen from cracking 
natural gas is 70, 9 MJ. The same indicator for 1 kg of methanol also produced from natural gas is 36.9 MJ. FAME contains 
around 10% of methanol and HVO around 4% of hydrogen (mass). The selected processes for this example are the most 
commonly used for these products. 
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statistically significant. Still, the fact that lca_cons is statistically significant warns us about the importance 
of the definition of system boundaries and coproduct accounting methodology. 
 
Typological variables 
Regarding typological variables, the coefficient of zlab_us variable is significant at the 1% level and its sign 
is negative whereas zlab_other is not statistically significant. Thus, the previous result regarding the 
influence of geographical location is partly retrieved: GHG emissions of G3 biofuels are statistically lower 
when studies are from NA compared to ones from Europe. The non-significance of zlab_other indicates that 
there are no systematic differences between results drawn from European studies and other countries. 
 

Table 7 – Results of MRA for the econometric samples G3 biofuels 
Samples G3 G3 G3 G3 G3 G3 G3 G3 G3 G3
Model 1aG3 2aG3 1bG3 2bG3 1cG3 2cG3 1dG3 2dG3 1eG3 2eG3
Constant 318.44***

(90.09)
550.41***
(171.08)

621.72***
(99.61)

916.55***
(146.59)

490.82***
(87.74)

640.23***
(68.43)

450.73***
(88.11)

585.43***
(59.96)

105.38***
(19.91)

237.46***
(25.17)

Technical data
fame
hvo 134.18***

(35.34)
185.12***
(39.47)

135.18***
(32.44)

181.47***
(34.94)

137.73***
(34.09)

178.64***
(35.28)

134.31***
(34.62)

176.78***
(34.69)

g3_productivity - -5.82***
(1.86)

- -3.19***
(1.2)

g3_productivity_sq - 0.02**
(0.01)

g3_productivity_ln -65.31***
(20.13)

-124.8***
(45.43)

-64.46***
(20.06)

-127.33***
(44.5)

g3_oil -434.74***
(142.4)

-521.06***
(112.68)

-425.28***
(150.9)

-522.41***
(110.74)

-430.6***
(146.08)

-527***
(115.09)

g3_oil_sq
g3_oil_ln -140.32***

(42.3)
-161.66***

(39.17)
g3_Oppond -197.13***

(34.6)
-259.9***
(24.28)

-198.94***
(36.92)

-260.33***
(24.35)

-201.93***
(38.32)

-257.79***
(24.13)

-199.6***
(38.46)

-257.1***
(23.73)

Methodological choices
lca_att (ref)
lca_cons 172.72***

(61.08)
250.7***
(70.3)

174.8***
(65.98)

254.66***
(73.36)

196.92**
(79.77)

268.68***
(81.63)

187.41**
(84.67)

290.31***
(86.21)

- -

Typology of the study
zlab_us -207.56***

(31.01)
-259.02***

(26.35)
-198.73***

(29.55)
-244.44***

(25.73)
-201.53***

(30.19)
-244.11***

(26.09)
-199.27***

(30.8)
-240.76***

(25.61)
-95.93***
(26.17)

-225.96***
(31.21)

zlab_eu (ref)
zlab_other - - - - - - - - -114.8***

(21.87)
-246.87***

(26.35)
Model information
N 68 68 68 68 68 68 68 68 69 69
Mean dep. Var. 59.97 68.95 59.97 67.95 59.97 67.85 59.97 66.53 58.84 126.49
Adj. R-squ. 65.23% 80.63% 66.07% 81.32% 66.59% 81.92% 66.06% 81.34% 17.77% 48.39%
Log-Likelihood -373.01 -376.38 -372.18 -375.14 -371.08 -373.46 -372.19 -375.11 -410.22 -418.31
F-stat.
(P. value)

11.11
(0,0000)

24.7
(0,0000)

11.67
(0,0000)

25.07
(0,0000)

10.96
(0,0000)

22.62
(0,0000)

13.53
(0,0000)

27.17
(0,0000)

11.17
(0,0000)

31.42
(0,0000)

Skewness 
(P. value) 

9.25
 (0.2352)

13.93
 (0.0524)

14.15
 (0.078)

16.85
 (0.0184)

32.57
(0,0000)

Kurtosis 
(P. value) 

0.06
 (0.8139)

0.32
 (0.5694)

0.47
 (0.4938)

0.41
 (0.521)

6.01
 (0.0142)

AIC 762.02 768.75 760.36 766.29 760.17 764.92 760.37 766.23 828.44 844.62
BIC 779.78 786.51 778.11 784.04 780.14 784.89 778.13 783.98 837.37 853.56
LR test (P. value)
Nested model: model (e)

74.42
(0,0000)

83.87
(0,0000)

76.08
(0,0000)

86.34
 (0)

78.27
(0,0000)

89.71
(0,0000)

76.06
(0,0000)

86.4
(0,0000)

Procedure
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS
OLS 

(White's 
HCCM)

WLS

 
 

4.3 Harmonization  
 
The MRA results presented in Section 4.2 are now used to adress the harmonization issue in the field of 
advanced biofuels GHG emissions thanks to the technique of benefits transfer using meta-regression 
models. As already demonstrated in the previous Section, the meta-regression framework allows the 
production of an estimation of the mean e-s weighted by the systematic influence of its main drivers. Once 
estimated, the meta-function can be used to deduce original values of the e-s by specifying new values for 
the main drivers identified corresponding to relevant case studies. This technique of benefits transfer using 
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meta-regression models, as it is named in the MA literature, may be a particularly well adapted methodology 
to deal with the so-called harmonization issue specific to the LCA literature. 
 
This section aims at providing an illustration of the potential for MRA to perform harmonization in the field 
of LCA through an application to advanced biofuels GHG emissions. To do so, predicted values of the e-s 
are computed using the meta-functions estimated in Section 4.2. 
The predicted values can be calculated using a combination of variables that already exists in the meta-
database: this type of prediction is called "in sample". In sample prediction enables the comparison of 
collected values (estimations of the e-s) and predicted values in order to check the accuracy of the meta-
function in predicting the e-s. 
Furthermore, predicted values can be extrapolated for a combination of relevant variables that do not 
necessarily exist in the meta-database, hence the prediction is called "out of sample". Out of sample 
prediction could provide values for the e-s for case studies not assessed in the literature. In addition, out of 
sample prediction applied to quantitative variables can help to test how sensible the e-s is to these variables.  
 
First, in sample predictions are presented and analyzed. Second, out of sample predictions are conducted 
assessing in particular the sensitivity of quantitative variables (algae productivity and oil content for G3 
biofuels, mass yield for BtL and Ethanol). 

4.3.1 Prediction in sample 
Table 8 presents some characteristics of predicted values compared to collected values (estimations of the e-
s in the meta-database) for each sample. The meta-models used to calculate these in sample predictions are 
those estimated in columns (1aAll), (1aG2), (1aEtha), (1aBtL) and (1aG3) for the "whole" sample, the "G2" 
sample, the"G2-Ethanol" sample, the "G2-BtL" sample and the "G3" sample, respectively (see Table 4, 
Table 5, Table 6 and Table 7). 
 
First, we observe that mean values for predicted values are slightly different from those of collected values. 
Nevertheless the ranking between G2 and G3 biofuels, BtL and Ethanol in terms of contribution to the 
climate change (i.e. amount of GHG emissions emitted all along their life cycle) is still the same as depicted 
in the econometric analysis. Second, the range of variation is narrower for predicted values than for 
collected values, except for the G3 sample. Furthermore, these meta-models tend to overestimate predicted 
values compared to their corresponding collected values (53% to 56% of predicted values are overestimated 
depending on the samples) as depicted in Figure 6. 
  
Table 8 – Characteristics of collected and predicted values of the e-s in g CO2eq/MJ (predicted values calculated from (1a) 

meta-models) 
Samples Whole G3 G2 BtL Ethanol
Collected values
Number of values 533 69 464 143 321
Mean 28.64 58.84 24.15 18.65 26.61
Min -85.00 -85.00 -24.00 -24.00 -23.65
Max 332.20 332.20 85.80 85.68 85.80
NA values higher than -60% 
GHG emission threshold

7% 14% 5% 1% 7%

EU values higher than -60% 
GHG emission threshold

25% 30% 24% 17% 27%

Predicted values
Number of values 533 68 464 132 209
Mean 
[Confident Interval]

28.64
[25.19;32.09]

59.97
[43.29;76.65]

24.15
[22.56;25.74]

19.45
[16.67;22.23]

19.7
[17.37;22.03]

Min -9.42 -109.25 -15.82 -8.04 -20.86
Max 76.27 230.82 47.91 56.31 47.49
Underestimated values 44% 46% 44% 47% 47%
Overestimated values 56% 54% 56% 53% 53%
Collected values included in 
the predicted value CI

12% 51% 22% 18% 37%

NA values higher than -60% 
GHG emission threshold

5% 9% 2% 1% 2%

EU values higher than -60% 
GHG emission threshold

7% 28% 22% 8% 1%
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Figure 6 – Predicted and collected values of the e-s for meta-model (1a) distinguished by their geographical location 
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4.3.2 Prediction out of sample 
Out of sample prediction enables the building of values of the e-s for combinations of variables that do not 
necessarily exist in the meta-database. Those values are calculated from the meta-function obtained by the 
meta-regression method. This harmonization method allows us to obtain mean values of the e-s and 
associated confidence intervals (CI) for each combination of statistically significant variables of a meta-
model. For instance, using the meta-model for the "whole" sample presented in column (1aAll), Table 4, 
predicted values of the e-s can be calculated for G3 biofuel, BtL and Ethanol in Europe and North America. 
Table 9 and Table 10 illustrate the procedure. Table 9 reports coefficient estimates of the model (1aAll) (as 
presented in column (1aAll), Table 4) and the different values of the variable of this reduced model which 
have to be imputed to compute the predicted values of the e-s for G3 biofuel, BtL and Ethanol in Europe and 
North America. Table 10 shows the link between these imputed values and the corresponding predicted 
values of the e-s whereas Figure 7 offers an alternative view of Table 10 results. 
 

Table 9 - Benefits Transfer for the "Whole" Sample (1aAll meta-model) 
Samples Whole
Model: 
Parameter Estimate

1aAll

Constant 76,27***
(13,64)

1 1 1 1 1 1

Technical data
gen_3 (ref for Whole) 0 0 0 0 0 0
etha -41,39***

(13,14)
0 1 0 0 1 0

btl (ref for G2) -52,12***
(13,36)

0 0 1 0 0 1

Typology of the study
zlab_us -24,6***

(3,97)
0 0 0 1 1 1

zlab_eu (ref) 0 0 0 0 0 0
zlab_other -85,69***

(15,6)
0 0 0 0 0 0

Transfer Values
76,27

(13,64)
34,88
(1,75)

24,15
(1,88)

51,67
(12,35)

10,29
(2,98)

-0,44
(3,50)

Imputed Values

 
 

Table 10 - Harmonized e-s (g CO2eq/MJ) for the "Whole" sample (1aAll meta-model)) 

Min Max
G3 76,27 49,54 103,00
G2 Ethanol 34,88 31,45 38,31
G2 BtL 24,15 20,46 27,84
G3 51,67 27,47 75,88
G2 Ethanol 10,29 4,45 16,13
G2 BtL -0,44 -7,31 6,42

In sample 
predicted 
value

Mean 28,64 25,19 32,09

Harmonized 
e-s

95% Confidence Interval

Europe

North 
America
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Figure 7 – Predicted values of the effect size for the whole sample calculated from meta-model 1aAll  

 
As depicted in the Figure 7, predicted values of GHG emissions for advanced biofuels in Europe are always 
higher than those in North America. In addition, GHG emissions are lower for BtL than Ethanol, and G3 
biofuels always emit more GHG emissions than G2 biofuels. Those results are in line with the statistical 
description conducted in Section 3.2. Furthermore, the predicted value CIs are wider for G3 biofuels than for 
G2 biofuels, meaning that the model better estimates G2 biofuels GHG emissions than those of G3 biofuels. 
It should be noted that predicted values of GHG emissions for advanced biofuels are always lower than 
GHG emissions for the reference fossil fuel even when considering CI, except for G3 biofuel in Europe.  
 
The same type of analysis could be conducted for each meta-model. Out of sample prediction could also be 
used to test the sensitivity of results for quantitative variables. A range of values for quantitative variables 
could be tested by calculating mean predicted values for the e-s and associated CI, ceteris paribus. 
 
For instance, the influence of oil content and algae productivity is tested for G3 biofuels (Figure 8 and 
Figure 9), by testing the range of values found in the meta-database. Results show that both variables have a 
non-linear effect on LCA GHG emissions, ceteris paribus. Furthermore, variations for high values of the 
algae productivity have less effect on the e-s than variations for low values. Moreover, CIs are smaller for 
oil content and algae productivity values around mean values than for extreme values. 
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Figure 8 – Influence of oil content on predicted values of the e-s for G3 sample (1aG3 meta-model) 
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Figure 9 – Influence of algae productivity on predicted values of the e-s for G3 sample (1aG3 meta-model) 

 
The same type of sensitivity analysis is conducted to test the influence of mass yield values of conversion 
process unit on BtL and Ethanol GHG emission values. As depicted in Figure 10 and Figure 11, mass yield 
value has a non linear effect on LCA GHG emissions of G2 biofuels, ceteris paribus. Variations for high 
values have less effect on the e-s than variations for low values. In addition, CIs are smaller for mass yield 
values around mean values than for extreme values, as previously described in the G3 sample. 
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Figure 10 - Influence of the mass yield on predicted values of the e-s for Ethanol sample (1aEtha meta-model) 
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Figure 11 - Influence of the mass yield on predicted values of the e-s for BtL sample (1aBtL meta-model) 
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5 Concluding remarks and discussion 
This article aims at synthesizing the literature of LCA studies which have estimated GHG emissions of 
advanced biofuels. Our literature review showed a high variation among the results (Figure 1). Thus, one 
can wonder i) if there is a consensus about GHG emission benefits from advanced biofuels and ii)  why there 
is so much variation among results. To do so, we have been chosen to apply a specific MA methodology (the 
"meta-regression anlysis", MRA) rather than a more classical narrative literature review approach. It 
provides a multivariate statistical analysis of previous estimated results to synthesize the available 
information. This assessment brings an extensive overview and contributes for a better understanding of the 
main factors inducing GHG emission variations. By using this original quantitative research framework, this 
article attempts to take the analysis of advanced biofuel GHG emissions one step further by complementing 
the qualitative surveys which have already been published [8–13]. We investigate – through an application – 
the potential for MRA to synthesize LCA literature by highlighting the main determinants of result 
variability in order to perform harmonization. 
 
Our primary purpose was to identify and quantify which factors among i) technical data/characteristics, ii)  
author's methodological choices and iii)  typology of the study under consideration have an impact on 
variations of the GHG emission estimates. Our results indicate a hierarchy between G3 and G2 biofuels: 
GHG emissions of G3 biofuels are statistically higher than those of Ethanol which, in turn, are superior to 
those of BtL. Moreover, whatever the type of advanced biofuel considered, North-American estimates are 
statistically higher than European estimates. Regarding author methodological choices, we have shown that 
some variables can influence the LCA results, such as the type of LCA approach (A-LCA vs. C-LCA), the 
method to account for coproducts and the fact of taking into account iLUC. Some technical variables appear 
to have an influence on GHG emission estimates. Concerning G2 biofuels, the mass yield has a negative and 
non-linear effect for both Ethanol and BtL whereas the type of process has a statistically significant effect 
only for BtL. For G3 biofuels, the algae productivity and its oil content have systematically a negative and 
non-linear effect. Finally, conclusions can be drawn also for some variables that have not been identified as 
variables influencing the final LCA result such as the type of biomass pretreatment in the Ethanol 
conversion process and the use of CCS in the BtL conversion process. The former is probably not 
statistically significant because most of the Ethanol technical data used in the different studies are derived 
from one single study [92]. The latter is a variable expected to have a negative impact in the GHG emission 
results but that could not be tested because all observations with the use of CCS fell in the outliers category. 
 
The secondary purpose of this study was to adress the harmonization issue in the field of advanced biofuel 
GHG emissions by using the technique of benefits transfer using meta-regression models. Our results may 
be summarized as follows. For each type of biofuel, a mean value of life cycle GHG emissions (expressed in 
g CO2eq / MJ of biofuel) weighted by the influence of its main drivers and its corresponding Confidence 
Interval is provided (Figure 5): about 60.0 (ranging from 43.3 to 76.7) for G3 biofuels; 19.7 (ranging from 
17.4 to 22.0) for Ethanol; and 19.5 (ranging from 16.7 to 22.2) for BtL. Lastly, these values appear 
systematically higher for North-American estimates compared to those of Europe, ceteris paribus (Figure 7). 
Note that this range of values is lower than the fossil reference (about 83.8 in g CO2eq / MJ). However, only 
Ethanol and BtL do comply with the GHG emission reduction thresholds defined in both the US and EU 
directives.  
 
Some results highlighted in this MRA have revealed some new information not previously assessed in this 
literature such as the existence of some non-linear effects regarding technical variables. Moreover, MRA 
provide i) a measure of the mean e-s and ii)  a measure of the precision of this mean value estimate as 
provided by the corresponding Confidence Intervals. 
 
Systematic reviews of LCA studies have gained interest due to their potential to clarify the impacts of 
particular products or services, producing more robust and policy-relevant results [14]. Most of the 
published so-called LCA meta-analyses rely on a "harmonization" procedure adjusting other study estimates 
based on "more consistent methods and assumptions" [15]. These studies typically harmonize technical 
parameters and methodological choices such as system boundaries, allocation procedures, impact calculation 
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method, etc. [17,33,82,86,97–100]. All the cited studies are able to reduce variability in calculated outcomes 
representing a useful starting point for more precise estimates of LCA results. However, this does not mean 
that this "harmonization" procedure, which we will call "normalization”, produces more accurate results 
since the "more consistent methods and assumptions" applied are subjective depending on an author choices 
(different authors can consider different methods and assumptions to be more consistent).  
 
The MA approach applied in this study is quite different and follows the traditional practice in biomedical 
sciences or economics, based on in-depth application of statistical methods and analysis. To our knowledge, 
Bureau et al. [34] are the only authors to use this type of approach in LCA systematic reviews. In the same 
way as their study, our results show that this methodology can be consistently applied for the identification 
of parameters that influence a biofuel LCA result. Moreover, we have gone further by proposing a method to 
predict LCA results using a meta-model. This can be seen as a harmonization method alternative to the one 
applied currently in LCA meta-analysis ("normalization").   
 
Our meta-model is obtained from a meta-regression and, therefore, it contains the parameters that were 
statistically proven to influence LCA results in a given sample. Our results show that, with this approach, we 
can provide more than a mean value and an interquartile range for the e-s as done in the "normalization" 
studies. We can calculate a real confidence interval for our predictions.  
 
Among the LCA meta-analysis reviewed, the only meta-model built using regression techniques, is 
attempted in a work from Padey et al. [101]. However, their wind turbine LCA meta-model is based on a 
limited number of parameters (lifetime and wind speed) and their regression method cannot account for 
qualitative parameters (dummy variables used in this study). Therefore, we observe that this is a field where 
significant progress can be made and we would recommend that the LCA community should work more 
closely with the Econometrics community so that more studies of this type could be conducted. 
 
However, there are many limitations typically associated with MA. In the construction of the database, for 
example, there is always some exogenous information that has to be provided. Even if we avoid it as much 
as possible, in some cases it is necessary. This happened especially in the calculation of the e-s where the 
data required for the conversion of units (LHV, density, motor performance, etc.) was not always provided 
by the study in question.  
 
Moreover, there is a compromise that has to be made between the number of studies that pass the screening 
process and the number of independent variables that are used in the description of an observation. In a MA 
database, all of the observations in a given sample have to be described with the same amount of 
independent variables. Theoretically, all the parameters that potentially influence the e-s have to be 
included. However, in LCA, the results are affected by hundreds of inputs and methodological choices, 
making it impossible to fully explain all the results of a big number of observations given the heterogeneity 
in LCA reporting. It was our judgement and experience in conducting LCA studies, but also previous 
narrative surveys, that determined which explanatory variables should be included in the database. 
 
Finally, there may be some limitations regarding the statistical population of the MA sample. Heath and 
Mann [15] highlight the fact that MA cannot make up for a lack of studies on a certain technology or 
methodological issue. In our case, for example, there are only 3 observations for BtL including CCS in its 
production pathway and these were coincidently discarded from the meta-regression sample as outliers. 
Therefore, no conclusions could be drawn from this technological parameter. Another example is the limited 
number of consequential LCAs, also limiting the conclusions we can reach concerning this methodological 
choice.  
 
On our view, MA appear thus more as a complementary methodology than an alternative one to more 
classical narrative surveys. 
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Appendices 
 

Appendix A. Technical description of advanced biofuels 
 
Figure A.1 represents the main steps involved in the production of second and third generation biofuels (G2 
and G3 biofuels respectively) discussed in this paper and the following text contain a brief description of 
their production processes. 
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Figure A.1 – Main steps in the production of advanced biofuels 
 
Second generation Ethanol is obtained from the biochemical conversion of annual crop residues (e.g. corn 
stover) and perennial crops (e.g. miscanthus). A pretreatment of the biomass is necessary to separate the 
cellulose from hemicellulose and lignin. Once the cellulose is accessible, enzymes are used to hydrolyze 
these molecules, transforming them into sugars that can be fermented. The product of fermentation needs to 
be distilled and dehydrated for obtaining pure Ethanol [92,102]. 
 
Synthetic diesel from biomass is also known as BtL (Biomass to Liquids) or biomass FT-diesel. It is 
produced by the thermochemical conversion of forest residues, herbaceous energy crops (e.g. switchgrass) 
and woody biomass (e.g. poplar), which is a promising second generation pathway. A pretreatment of the 
biomass is necessary so that it can be loaded into the gasifier. In the gasifier, the biomass suffers a thermal 
treatment into what is known as "syngas", composed mainly of H2 and CO. Impurities are removed from the 
"syngas" during a gas cleaning step, due to the high sensibility of the Fischer-Tropsch (FT) reaction catalyst. 
The synthetic diesel is obtained after the upgrading (hydrocracking) of the products from the FT unit 
[103,104]. 
 
Biodiesel can be produced from conventional transesterification of oil extracted from microalgae that have a 
higher theoretical productivity per hectare than conventional vegetable oil crops (e.g. soybeans, palm). 
Microalgae can be cultivated in open ponds or photobioreactors (PBR) and the technologies for harvesting, 
drying and extracting oil still require considerable research effort. Various pathways are studied in order to 
reduce costs and energy consumption in the production process. The use of power plant flue gas as a CO2 

source for growing algae or wastewater as a source of nutrients are potential options for this biodiesel 
pathway [95,105]. 
 
Studies about hydrotreated vegetable oil (HVO) from the hydrogenation of microalgae oil were also 
included in this literature review. It has different characteristics than biodiesel but the most important life 
cycle steps involving microalgae growth, harvesting and oil extraction are the same. HVO, as well as BtL, 
are being studied as renewable alternatives not just for road transportation but also for the aviation industry.  
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Appendix B. Complements on the database 
 

Table B.1 - List of selected LCA studies assessing GHG emissions of G2 and G3 biofuels 
Name Authors Title Year
Bai et al. (2010) Bai Y, Luo L, van der Voet E Life cycle assessment of switchgrass derived ethanol as transport fuel 2010
Batan et al. (2010) Batan L, Quinn J, Willson B, Bradley T Net energy and greenhouse emission evaluation of biodiesel derived from microalgae 2010
Campbell et al. (2010) Campbell PK, Beer T, Batten D Life cycle assessment of biodiesel production from microalgae in ponds (submitted) 2010

Cherubini et al. (2011) Cherubini F, Hammer Stromman A, Ulgiati S
Influence of allocation methods on the environmental performance of biorefinery products - 
A case study

2011

Choudhury et al. (2002)
Choudhury R, Weber T, Schindler J, Weindorf 
W, Wurster R

Well-to-wheel analysis of energy use and greenhouse gas emissions of advanced 
fuel/vehicle systems

2002

Delucchi (2006) Delucchi M Life Cycle Analysis of Biofuels 2006

Dussault et al. (2010)
Dussault P.C, Bradt L, Ponce-Ortega J.M, El-
Halwagi M.M

Incorporation of process integration into life cycle analysis for the production of biofuels 2010

Elsayed et al. (2003) Elsayed M.A, Matthews R, Mortimer N.D Carbon and Energy Balances for a Range of Biofuels Options 2003

Fazio & Monti (2011) Fazio S, Monti A
Life cycle assessment of different bioenergy production systems including perennial and 
annual crops

2011

Gonzales-Garcia et al. (2009a)
Gonzales Garcia S, Luo L, Moreira T, FeijooG, 
Huppes G

Life cycle assessment of flax shives derived second generation ethanol fueled automobiles 
in Spain (submitted)

2009

Gonzales-Garcia et al. (2009b)
Gonzales-Garcia S, Gasol C.M, Gabarrelle X, 
Rieradevall J, Moreira T, Feijoo G

Environmental profile of ethanol from poplar biomass as transport fuel in southern Europe 
(submitted)

2009

Gonzalez-Garcia et al. (2009c) Gonzalez-Garcia S, Moreira M.T, Feijoo G
Environmental performance of lignocellulosic bioethanol production from Alfalfa 
stems(submitted)

2009

Groode et al. (2007) Groode T.A, Heywood J.B Ethanol a look ahead 2007

Haase et al. (2009) Haase M, Skott S, Fröhling M
Ecological evaluation of selected 1st and 2nd generation biofuels- FT fuel from wood and 
ethanol from sugar beets (submitted)

2009

Hoefnagels et al. (2010) Hoefnagels R, Smeet E, Faaij A Greenhouse gas footprints of different biofuel production systems 2010

Hsu et al. (2010)
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Table B.2 - Description of variables included in the database 
Variables Family Description of variables Variables Type of variable Unit
Technical data

Second generation biofuel gen_2 Binary (=1 if 'true'; 0 else)
Third generation biofuel gen_3 Binary (=1 if 'true'; 0 else)
Ethanol etha Binary (=1 if 'true'; 0 else)
Biomass to Liquid (BtL) btl Binary (=1 if 'true'; 0 else)
Fatty Acid Methyl Ester (FAME) fame Binary (=1 if 'true'; 0 else)
Hydrotreated Vegetable Oil (HVO) hvo Binary (=1 if 'true'; 0 else)
Microalgae mat_algae Binary (=1 if 'true'; 0 else)
Agricultural residues mat_agrires Binary (=1 if 'true'; 0 else)
Forestry residues mat_for Binary (=1 if 'true'; 0 else)
Energy crop mat_enercult Binary (=1 if 'true'; 0 else)
Farmed wood mat_farmwood Binary (=1 if 'true'; 0 else)
Others mat_other Binary (=1 if 'true'; 0 else)
Cultivated feedstock mat_cult Binary (=1 if 'Cultivated 

feedstock'; 0 if 'Waste feedstock')

Existence of coproduct coprod Binary (=1 if 'true'; 0 else)
Glycerin as coproduct cop_gly Binary (=1 if 'true'; 0 else)
Electricity as coproduct cop_elec Binary (=1 if 'true'; 0 else)
Heat as coproduct cop_heat Binary (=1 if 'true'; 0 else)
Algal meal as coproduct cop_algmeal Binary (=1 if 'true'; 0 else)
Biogas as coproduct cop_biog Binary (=1 if 'true'; 0 else)
Other coproduct cop_other Binary (=1 if 'true'; 0 else)
Other coproduct than elelctricity cop_otherelec Binary (=1 if 'true'; 0 else)
Number of coproducts coprod_num Binary (=1 if 'true'; 0 else)
Mass yield provided mass_yield_exist Binary (=1 if 'true'; 0 else)
Value of mass yield g2_mass_yield Quantitative % mass
Steam explosion as biomass pretreatment for 
Ethanol technology

eth_expl Binary (=1 if 'true'; 0 else)

Dilute sulfuric acid as biomass pretreatment 
for Ethanol technology

eth_ac Binary (=1 if 'true'; 0 else)

Ammonia fibre explosion as biomass 
pretreatment for Ethanol technology

eth_amm Binary (=1 if 'true'; 0 else)

Other processes as biomass pretreatment for 
Ethanol technology

eth_other Binary (=1 if 'true'; 0 else)

Torrefaction as biomass pretreatment for BtL 
technology

btl_pre_torr Binary (=1 if 'true'; 0 else)

Pyrolyse as biomass pretreatment for BtL 
technology

btl_pre_pyro Binary (=1 if 'true'; 0 else)

No biomass pretreatment for BtL technology btl_pre_none Binary (=1 if 'true'; 0 else)

Autothermic BtL technology btl_pro_autoth Binary (=1 if 'true'; 0 else)
Allothermic BtL technology with natural gas 
as fuel

btl_pro_alng Binary (=1 if 'true'; 0 else)

Allothermic BtL technology with imported 
electricity as fuel

btl_pro_alelec Binary (=1 if 'true'; 0 else)

Allothermic BtL technology with renewable 
energy as fuel

btl_pro_alrenew Binary (=1 if 'true'; 0 else)

BtL technology with tail gas recycled btl_gasrecycl Binary (=1 if 'true'; 0 else)
BtL technology with Carbon Capture and 
Storage

btl_ccs Binary (=1 if 'true'; 0 else)

Microalgae productivity for G3 biofuel g3_productivity Quantitative g/(m2.day)
Oil content of microalage for G3 biofuel g3_oil Quantitative % dry mass
Open Pond for microalgae cultivation for G3 
biofuel

g3_Oppond Binary (=1 if 'open pound'; 0 if 
"photobioreactor or hybrid")

North America zloc_us Binary (=1 if 'true'; 0 else)
Europe zloc_eu Binary (=1 if 'true'; 0 else)
Other zloc_other Binary (=1 if 'true'; 0 else)

Type of biofuel

Type of biomass 
feedstock

Type of coproducts

Type of 
technologies and 
associated yields

Geographical 
location of the case 
study
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Methodological choices
Attributionnal LCA lca_att Binary (=1 if 'true'; 0 else)
Consequential LCA lca_cons Binary (=1 if 'true'; 0 else)
Well To Tank wtt Binary (=1 if 'true'; 0 else)
Well To Wheel wtw Binary (=1 if 'true'; 0 else)
Infrastructures taken into account in 
boundaries

infrastruct Binary (=1 if 'true'; 0 else)

Energetic allocation copval_alloc_ener Binary (=1 if 'true'; 0 else)
Mass allocation copval_alloc_mass Binary (=1 if 'true'; 0 else)
Economic allocation copval_alloc_markval Binary (=1 if 'true'; 0 else)
Exergetic allocation copval_alloc_exerg Binary (=1 if 'true'; 0 else)
Allocation copval_alloc Binary (=1 if 'true'; 0 else)
System expansion copval_systexp Binary (=1 if 'true'; 0 else)
Hybrid copval_hyb Binary (=1 if 'true'; 0 else)

Carbon neutral Carbon neutral hypotesis for WTW G3 
biofuel studies

wtw*g3_carbneut Binary (=1 if 'true'; 0 else)

Characterization 
method for impact 
assessment

Number of greenhouse gases taken into 
account

gas_num Binary (=1 if 'number >3'; 0 else)

Method for taking 
into account N2O 
emission from N 
input

Use of IPCC method ass_ipcc Binary (=1 if 'true'; 0 else)

LUC taken into account luc Binary (=1 if 'true'; 0 else)
Direct LUC taken into account luc_dir Binary (=1 if 'true'; 0 else)
Indirect LUC taken into account luc_indir Binary (=1 if 'true'; 0 else)
No method for taking into account 
uncertainties

uncer_ref Binary (=1 if 'true'; 0 else)

Use of Monte Carlo analysis uncer_MC Binary (=1 if 'true'; 0 else)
Use of sensitivity analysis uncer_SA Binary (=1 if 'true'; 0 else)
Use of a method for taking into account 
uncertainties

uncer_MCSA Binary (=1 if 'true'; 0 else)

Net Energy Value assessed impcat_nev Binary (=1 if 'true'; 0 else)
Non Renewable Energy Consumption 
assessed

impcat_nrc Binary (=1 if 'true'; 0 else)

Energetic indicator assessed impcat_nrcnev Binary (=1 if 'true'; 0 else)
Global Warming indicator assessed impcat_gwp Binary (=1 if 'true'; 0 else)
Other environmental indicator assessed impcat_other Binary (=1 if 'true'; 0 else)
Number of environmental indicator assessed impcat_all Quantitative number

Typology of the study
Peer review literature lit_pr Binary (=1 if 'true'; 0 else)
Official report lit_or Binary (=1 if 'true'; 0 else)
Directive or Standard lit_dir Binary (=1 if 'true'; 0 else)
Official report or directive/standard lit_ordir Binary (=1 if 'true'; 0 else)
Working paper lit_wp Binary (=1 if 'true'; 0 else)
Year of publication year Quantitative year
Year of publication after 2007 year_07 Binary (=1 if 'true'; 0 else)
Year of publication after 2009 year_09 Binary (=1 if 'true'; 0 else)
Year of publication after 2010 year_10 Binary (=1 if 'true'; 0 else)
North America zlab_us Binary (=1 if 'true'; 0 else)
Europe zlab_eu Binary (=1 if 'true'; 0 else)
Other zlab_other Binary (=1 if 'true'; 0 else)

Year of publication

Geographical 
location of authors

Method for taking 
into account Land 
Use Change

Method for taking 
into account 
uncertainties

Number and type 
of environmental 
impact indicator 
assessed in the 
study

Type of study

Type of LCA 
approach

System boundaries

Method for taking 
into account 
coproducts

 
 

Table B.3 - Share of studies and observations for the geographical location of the authors and of assessed pathways 

North 
America

Europe Other North 
America

Europe Other

Studies (47) 45% 53% 2% - - -
Observations (593) 32% 67% 1% 34% 64% 2%

Geographical location of the authors Geographical location of assessed 
pathways

Weighted by
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Table B.4 – Descriptive statistics for the effect size and variables  of the original Whole sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 593 34.45 89.34 -142.18 1377.90
es_min 593 -11.25 70.81 -352.81 881.44
es_max 593 80.18 155.52 -127.01 1874.37
es_var 593 2264.65 9868.76 0.00 64159.87
es_et 593 23.37 41.49 0.03 253.30
Technical data
gen_2 593 0.87 0.34 0 1
gen_3 593 0.13 0.34 0 1
etha 593 0.61 0.49 0 1
btl 593 0.26 0.44 0 1
fame 593 0.11 0.31 0 1
hvo 593 0.03 0.16 0 1
mat_algae 593 0.13 0.34 0 1
mat_agrires 593 0.22 0.41 0 1
mat_for 593 0.05 0.22 0 1
mat_enercult 593 0.28 0.45 0 1
mat_farmwood 593 0.10 0.30 0 1
mat_other 593 0.23 0.42 0 1
mat_cult 593 0.38 0.49 0 1
coprod 593 0.91 0.29 0 1
cop_gly 593 0.09 0.29 0 1
cop_elec 593 0.63 0.48 0 1
cop_heat 593 0.12 0.32 0 1
cop_algmeal 593 0.10 0.30 0 1
cop_biog 593 0.18 0.39 0 1
cop_other 593 0.25 0.54 0 2
cop_otherelec 593 0.48 0.50 0 1
coprod_num 593 1.36 1.00 0 5
mass_yield_exist 593 0.64 0.48 0 1
g2_mass_yield 378 0.22 0.07 0.07 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
g3_productivity 76 30.09 18.86 6.85 150.00
g3_oil 77 0.41 0.11 0.15 0.70
g3_Oppond 77 0.61 0.49 0 1
zloc_us 593 0.34 0.47 0 1
zloc_eu 593 0.64 0.48 0 1
zloc_other 593 0.02 0.15 0 1
Methodological choices
lca_att 593 0.97 0.17 0 1
lca_cons 593 0.03 0.17 0 1
wtt 593 0.38 0.49 0 1
wtw 593 0.62 0.49 0 1
infrastruct 593 0.44 0.50 0 1
copval_alloc_ener 593 0.26 0.44 0 1
copval_alloc_mass 593 0.04 0.20 0 1
copval_alloc_markval 593 0.12 0.32 0 1
copval_alloc_exerg 593 0.01 0.07 0 1
copval_alloc 593 0.42 0.49 0 1
copval_systexp 593 0.55 0.50 0 1
copval_hyb 593 0.07 0.26 0 1
wtw*g3_carbneut 77 0.00 0.00 0 0
gas_num 394 0.26 0.44 0 1
ass_ipcc 573 0.37 0.48 0 1
luc 593 0.51 0.50 0 1
luc_dir 593 0.51 0.50 0 1
luc_indir 593 0.03 0.18 0 1
uncer_ref 593 0.57 0.50 0 1
uncer_MC 593 0.10 0.30 0 1
uncer_SA 593 0.38 0.49 0 1
uncer_MCSA 593 0.48 0.50 0 1
impcat_nev 593 0.31 0.46 0 1
impcat_nrc 593 0.41 0.49 0 1
impcat_nrcnev 593 0.50 0.50 0 1
impcat_gwp 593 1.00 0.00 1 1
impcat_other 593 1.09 2.28 0 9
impcat_all 593 2.81 2.43 1 12
Typology of the study
lit_pr 593 0.63 0.48 0 1
lit_or 593 0.09 0.29 0 1
lit_dir 593 0.03 0.17 0 1
lit_ordir 593 0.12 0.32 0 1
lit_wp 593 0.25 0.44 0 1
year 593 2009.38 1.31 2002 2011
year_07 593 0.97 0.17 0 1
year_09 593 0.90 0.30 0 1
year_10 593 0.56 0.50 0 1
zlab_us 593 0.32 0.47 0 1
zlab_eu 593 0.67 0.47 0 1
zlab_other 593 0.01 0.10 0 1  
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Table B.5 – Descriptive statistics for the effect size and variables  of the original G3 sample 

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 77 88.87 211.85 -96.47 1377.90
es_min 77 -46.68 146.41 -352.81 881.44
es_max 77 224.42 351.73 -7.55 1874.37
es_var 77 11898.53 23739.99 265.09 64159.87
es_et 77 69.16 84.91 16.28 253.30
Technical data
gen_2 77 0.00 0.00 0 0
gen_3 77 1.00 0.00 1 1
etha 77 0.00 0.00 0 0
btl 77 0.00 0.00 0 0
fame 77 0.82 0.39 0 1
hvo 77 0.19 0.40 0 1
mat_algae 77 1.00 0.00 1 1
mat_agrires 77 0.00 0.00 0 0
mat_for 77 0.00 0.00 0 0
mat_enercult 77 0.00 0.00 0 0
mat_farmwood 77 0.00 0.00 0 0
mat_other 77 0.00 0.00 0 0
mat_cult 77 0.00 0.00 0 0
coprod 77 1.00 0.00 1 1
cop_gly 77 0.71 0.45 0 1
cop_elec 77 0.27 0.45 0 1
cop_heat 77 0.40 0.49 0 1
cop_algmeal 77 0.79 0.41 0 1
cop_biog 77 0.00 0.00 0 0
cop_other 77 0.95 0.93 0 2
cop_otherelec 77 0.87 0.34 0 1
coprod_num 77 2.99 1.71 1 5
mass_yield_exist 77 0.05 0.22 0 1
g3_productivity 76 30.09 18.86 6.85 150.00
g3_oil 77 0.41 0.11 0.15 0.70
g3_Oppond 77 0.61 0.49 0 1
zloc_us 77 0.42 0.50 0 1
zloc_eu 77 0.51 0.50 0 1
zloc_other 77 0.08 0.27 0 1
Methodological choices
lca_att 77 0.92 0.27 0 1
lca_cons 77 0.08 0.27 0 1
wtt 77 0.65 0.48 0 1
wtw 77 0.35 0.48 0 1
infrastruct 77 0.51 0.50 0 1
copval_alloc_ener 77 0.08 0.27 0 1
copval_alloc_mass 77 0.00 0.00 0 0
copval_alloc_markval 77 0.03 0.16 0 1
copval_alloc_exerg 77 0.00 0.00 0 0
copval_alloc 77 0.10 0.31 0 1
copval_systexp 77 0.90 0.31 0 1
copval_hyb 77 0.55 0.50 0 1
wtw*g3_carbneut 77 0.00 0.00 0 0
gas_num 77 0.45 0.50 0 1
ass_ipcc 77 0.48 0.50 0 1
luc 77 0.08 0.27 0 1
luc_dir 77 0.08 0.27 0 1
luc_indir 77 0.08 0.27 0 1
uncer_ref 77 0.39 0.49 0 1
uncer_MC 77 0.00 0.00 0 0
uncer_SA 77 0.61 0.49 0 1
uncer_MCSA 77 0.61 0.49 0 1
impcat_nev 77 0.30 0.46 0 1
impcat_nrc 77 0.40 0.49 0 1
impcat_nrcnev 77 0.70 0.46 0 1
impcat_gwp 77 1.00 0.00 1 1
impcat_other 77 0.66 1.13 0 5
impcat_all 77 2.36 1.38 1 7
Typology of the study
lit_pr 77 0.73 0.45 0 1
lit_or 77 0.00 0.00 0 0
lit_dir 77 0.08 0.27 0 1
lit_ordir 77 0.08 0.27 0 1
lit_wp 77 0.19 0.40 0 1
year 77 2009.88 0.32 2009 2010
year_07 77 1.00 0.00 1 1
year_09 77 1.00 0.00 1 1
year_10 77 0.88 0.32 0 1
zlab_us 77 0.42 0.50 0 1
zlab_eu 77 0.51 0.50 0 1
zlab_other 77 0.08 0.27 0 1  
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Table B.6 – Descriptive statistics for the effect size and variables  of the original G2 sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 516 26.33 45.20 -142.18 518.40
es_min 516 -5.96 48.83 -307.59 195.45
es_max 516 58.65 77.27 -127.01 841.35
es_var 516 827.04 3582.78 0.00 27149.13
es_et 516 16.54 23.55 0.03 164.77
Technical data
gen_2 516 1.00 0.00 1 1
gen_3 516 0.00 0.00 0 0
etha 516 0.70 0.46 0 1
btl 516 0.30 0.46 0 1
fame 516 0.00 0.00 0 0
hvo 516 0.00 0.00 0 0
mat_algae 516 0.00 0.00 0 0
mat_agrires 516 0.25 0.43 0 1
mat_for 516 0.06 0.23 0 1
mat_enercult 516 0.32 0.47 0 1
mat_farmwood 516 0.11 0.31 0 1
mat_other 516 0.26 0.44 0 1
mat_cult 516 0.43 0.50 0 1
coprod 516 0.89 0.31 0 1
cop_gly 516 0.00 0.00 0 0
cop_elec 516 0.69 0.46 0 1
cop_heat 516 0.08 0.27 0 1
cop_algmeal 516 0.00 0.00 0 0
cop_biog 516 0.21 0.41 0 1
cop_other 516 0.15 0.35 0 1
cop_otherelec 516 0.42 0.49 0 1
coprod_num 516 1.12 0.52 0 3
mass_yield_exist 516 0.73 0.44 0 1
g2_mass_yield 378 0.22 0.07 0.07 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
zloc_us 516 0.33 0.47 0 1
zloc_eu 516 0.66 0.48 0 1
zloc_other 516 0.02 0.12 0 1
Methodological choices
lca_att 516 0.98 0.14 0 1
lca_cons 516 0.02 0.14 0 1
wtt 516 0.34 0.47 0 1
wtw 516 0.66 0.47 0 1
infrastruct 516 0.43 0.50 0 1
copval_alloc_ener 516 0.28 0.45 0 1
copval_alloc_mass 516 0.05 0.21 0 1
copval_alloc_markval 516 0.13 0.34 0 1
copval_alloc_exerg 516 0.01 0.08 0 1
copval_alloc 516 0.47 0.50 0 1
copval_systexp 516 0.50 0.50 0 1
copval_hyb 516 0.00 0.04 0 1
gas_num 317 0.21 0.41 0 1
ass_ipcc 496 0.35 0.48 0 1
luc 516 0.58 0.49 0 1
luc_dir 516 0.58 0.49 0 1
luc_indir 516 0.03 0.16 0 1
uncer_ref 516 0.60 0.49 0 1
uncer_MC 516 0.11 0.32 0 1
uncer_SA 516 0.34 0.48 0 1
uncer_MCSA 516 0.46 0.50 0 1
impcat_nev 516 0.31 0.46 0 1
impcat_nrc 516 0.41 0.49 0 1
impcat_nrcnev 516 0.47 0.50 0 1
impcat_gwp 516 1.00 0.00 1 1
impcat_other 516 1.16 2.40 0 9
impcat_all 516 2.87 2.55 1 12
Typology of the study
lit_pr 516 0.61 0.49 0 1
lit_or 516 0.10 0.30 0 1
lit_dir 516 0.02 0.14 0 1
lit_ordir 516 0.12 0.33 0 1
lit_wp 516 0.26 0.44 0 1
year 516 2009.30 1.38 2002 2011
year_07 516 0.97 0.18 0 1
year_09 516 0.89 0.32 0 1
year_10 516 0.51 0.50 0 1
zlab_us 516 0.31 0.46 0 1
zlab_eu 516 0.69 0.46 0 1
zlab_other 516 0.00 0.00 0 0  
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Table B.7 – Descriptive statistics for the effect size and variables  of the original G2-Ethanol sample 

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 361 29.45 48.39 -113.60 518.40
es_min 361 -2.17 51.44 -307.59 195.45
es_max 361 61.12 85.31 -49.54 841.35
es_var 361 941.37 4232.25 0.00 27149.13
es_et 361 16.19 26.10 0.03 164.77
Technical data
gen_2 361 1.00 0.00 1 1
gen_3 361 0.00 0.00 0 0
etha 361 1.00 0.00 1 1
btl 361 0.00 0.00 0 0
fame 361 0.00 0.00 0 0
hvo 361 0.00 0.00 0 0
mat_algae 361 0.00 0.00 0 0
mat_agrires 361 0.29 0.45 0 1
mat_for 361 0.02 0.13 0 1
mat_enercult 361 0.29 0.45 0 1
mat_farmwood 361 0.10 0.30 0 1
mat_other 361 0.31 0.46 0 1
mat_cult 361 0.39 0.49 0 1
coprod 361 0.89 0.31 0 1
cop_gly 361 0.00 0.00 0 0
cop_elec 361 0.58 0.49 0 1
cop_heat 361 0.02 0.16 0 1
cop_algmeal 361 0.00 0.00 0 0
cop_biog 361 0.30 0.46 0 1
cop_other 361 0.15 0.36 0 1
cop_otherelec 361 0.46 0.50 0 1
coprod_num 361 1.06 0.49 0 3
mass_yield_exist 361 0.66 0.48 0 1
g2_mass_yield 237 0.25 0.05 0.11 0.50
eth_expl 361 0.08 0.28 0 1
eth_ac 361 0.83 0.37 0 1
eth_amm 361 0.08 0.28 0 1
eth_other 361 0.00 0.00 0 0
zloc_us 361 0.37 0.48 0 1
zloc_eu 361 0.61 0.49 0 1
zloc_other 361 0.02 0.15 0 1
Methodological choices
lca_att 361 0.98 0.14 0 1
lca_cons 361 0.02 0.14 0 1
wtt 361 0.37 0.48 0 1
wtw 361 0.63 0.48 0 1
infrastruct 361 0.45 0.50 0 1
copval_alloc_ener 361 0.34 0.48 0 1
copval_alloc_mass 361 0.04 0.21 0 1
copval_alloc_markval 361 0.07 0.25 0 1
copval_alloc_exerg 361 0.01 0.09 0 1
copval_alloc 361 0.47 0.50 0 1
copval_systexp 361 0.52 0.50 0 1
copval_hyb 361 0.00 0.05 0 1
gas_num 205 0.12 0.33 0 1
ass_ipcc 361 0.35 0.48 0 1
luc 361 0.66 0.48 0 1
luc_dir 361 0.66 0.48 0 1
luc_indir 361 0.03 0.16 0 1
uncer_ref 361 0.54 0.50 0 1
uncer_MC 361 0.13 0.33 0 1
uncer_SA 361 0.38 0.49 0 1
uncer_MCSA 361 0.51 0.50 0 1
impcat_nev 361 0.20 0.40 0 1
impcat_nrc 361 0.34 0.47 0 1
impcat_nrcnev 361 0.37 0.48 0 1
impcat_gwp 361 1.00 0.00 1 1
impcat_other 361 0.89 2.04 0 9
impcat_all 361 2.43 2.11 1 11
Typology of the study
lit_pr 361 0.62 0.49 0 1
lit_or 361 0.03 0.18 0 1
lit_dir 361 0.01 0.12 0 1
lit_ordir 361 0.05 0.21 0 1
lit_wp 361 0.33 0.47 0 1
year 361 2009.42 1.25 2002 2011
year_07 361 0.96 0.19 0 1
year_09 361 0.94 0.23 0 1
year_10 361 0.48 0.50 0 1
zlab_us 361 0.34 0.48 0 1
zlab_eu 361 0.66 0.48 0 1
zlab_other 361 0.00 0.00 0 0  
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Table B.8 – Descriptive statistics for the effect size and variables  of the original G2-BtL sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 155 19.04 35.78 -142.18 189.00
es_min 155 -14.77 40.94 -204.37 65.53
es_max 155 52.91 53.94 -127.01 334.35
es_var 155 560.76 975.95 0.21 5499.18
es_et 155 17.35 16.17 0.46 74.16
Technical data
gen_2 155 1.00 0.00 1 1
gen_3 155 0.00 0.00 0 0
etha 155 0.00 0.00 0 0
btl 155 1.00 0.00 1 1
fame 155 0.00 0.00 0 0
hvo 155 0.00 0.00 0 0
mat_algae 155 0.00 0.00 0 0
mat_agrires 155 0.16 0.37 0 1
mat_for 155 0.15 0.36 0 1
mat_enercult 155 0.41 0.49 0 1
mat_farmwood 155 0.13 0.34 0 1
mat_other 155 0.15 0.36 0 1
mat_cult 155 0.54 0.50 0 1
coprod 155 0.90 0.31 0 1
cop_gly 155 0.00 0.00 0 0
cop_elec 155 0.93 0.26 0 1
cop_heat 155 0.20 0.40 0 1
cop_algmeal 155 0.00 0.00 0 0
cop_biog 155 0.00 0.00 0 0
cop_other 155 0.13 0.34 0 1
cop_otherelec 155 0.33 0.47 0 1
coprod_num 155 1.26 0.56 0 2
mass_yield_exist 155 0.91 0.29 0 1
g2_mass_yield 141 0.16 0.06 0.07 0.42
btl_pre_torr 153 0.07 0.25 0 1
btl_pre_pyro 153 0.05 0.21 0 1
btl_pre_none 153 0.89 0.32 0 1
btl_pro_autoth 153 0.86 0.35 0 1
btl_pro_alng 153 0.08 0.27 0 1
btl_pro_alelec 153 0.03 0.18 0 1
btl_pro_alrenew 153 0.03 0.16 0 1
btl_gasrecycl 153 0.01 0.11 0 1
btl_ccs 153 0.02 0.14 0 1
zloc_us 155 0.23 0.42 0 1
zloc_eu 155 0.77 0.42 0 1
zloc_other 155 0.00 0.00 0 0
Methodological choices
lca_att 155 0.97 0.16 0 1
lca_cons 155 0.03 0.16 0 1
wtt 155 0.27 0.45 0 1
wtw 155 0.73 0.45 0 1
infrastruct 155 0.38 0.49 0 1
copval_alloc_ener 155 0.14 0.35 0 1
copval_alloc_mass 155 0.06 0.23 0 1
copval_alloc_markval 155 0.28 0.45 0 1
copval_alloc_exerg 155 0.00 0.00 0 0
copval_alloc 155 0.48 0.50 0 1
copval_systexp 155 0.46 0.50 0 1
copval_hyb 155 0.00 0.00 0 0
gas_num 112 0.38 0.49 0 1
ass_ipcc 135 0.34 0.48 0 1
luc 155 0.39 0.49 0 1
luc_dir 155 0.39 0.49 0 1
luc_indir 155 0.03 0.16 0 1
uncer_ref 155 0.72 0.45 0 1
uncer_MC 155 0.08 0.27 0 1
uncer_SA 155 0.26 0.44 0 1
uncer_MCSA 155 0.34 0.47 0 1
impcat_nev 155 0.56 0.50 0 1
impcat_nrc 155 0.57 0.50 0 1
impcat_nrcnev 155 0.71 0.46 0 1
impcat_gwp 155 1.00 0.00 1 1
impcat_other 155 1.79 2.99 0 9
impcat_all 155 3.92 3.11 1 12
Typology of the study
lit_pr 155 0.59 0.49 0 1
lit_or 155 0.26 0.44 0 1
lit_dir 155 0.04 0.19 0 1
lit_ordir 155 0.30 0.46 0 1
lit_wp 155 0.11 0.31 0 1
year 155 2009.01 1.62 2002 2011
year_07 155 0.97 0.18 0 1
year_09 155 0.75 0.44 0 1
year_10 155 0.56 0.50 0 1
zlab_us 155 0.23 0.42 0 1
zlab_eu 155 0.77 0.42 0 1
zlab_other 155 0.00 0.00 0 0  
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Appendix C. Complements on results 
 

Table C.1 – Descriptive statistics for the effect size and variables  of the econometric Whole sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 533 28.64 44.32 -85.00 332.20
es_min 533 -9.66 52.28 -352.81 101.59
es_max 533 66.99 105.24 -19.10 828.67
es_var 533 1666.43 8552.01 0.00 64159.87
es_et 533 19.61 35.84 0.03 253.30
Technical data
gen_2 533 0.87 0.34 0 1
gen_3 533 0.13 0.34 0 1
etha 533 0.60 0.49 0 1
btl 533 0.27 0.44 0 1
fame 533 0.10 0.30 0 1
hvo 533 0.03 0.17 0 1
mat_algae 533 0.13 0.34 0 1
mat_agrires 533 0.20 0.40 0 1
mat_for 533 0.05 0.22 0 1
mat_enercult 533 0.30 0.46 0 1
mat_farmwood 533 0.10 0.30 0 1
mat_other 533 0.23 0.42 0 1
mat_cult 533 0.39 0.49 0 1
coprod 533 0.91 0.29 0 1
cop_gly 533 0.09 0.28 0 1
cop_elec 533 0.65 0.48 0 1
cop_heat 533 0.11 0.32 0 1
cop_algmeal 533 0.10 0.30 0 1
cop_biog 533 0.18 0.38 0 1
cop_other 533 0.24 0.53 0 2
cop_otherelec 533 0.46 0.50 0 1
coprod_num 533 1.35 0.99 0 5
mass_yield_exist 533 0.65 0.48 0 1
g2_mass_yield 341 0.22 0.07 0.07 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 0 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0
g3_productivity 68 31.05 19.58 6.85 150.00
g3_oil 69 0.41 0.11 0.15 0.70
g3_Oppond 69 0.68 0.47 0 1
zloc_us 533 0.32 0.47 0 1
zloc_eu 533 0.65 0.48 0 1
zloc_other 533 0.03 0.16 0 1
Methodological choices
lca_att 533 0.97 0.18 0 1
lca_cons 533 0.03 0.18 0 1
wtt 533 0.36 0.48 0 1
wtw 533 0.64 0.48 0 1
infrastruct 533 0.42 0.49 0 1
copval_alloc_ener 533 0.27 0.44 0 1
copval_alloc_mass 533 0.05 0.21 0 1
copval_alloc_markval 533 0.10 0.30 0 1
copval_alloc_exerg 533 0.01 0.07 0 1
copval_alloc 533 0.42 0.49 0 1
copval_systexp 533 0.55 0.50 0 1
copval_hyb 533 0.07 0.26 0 1
wtw*g3_carbneut 69 0.00 0.00 0 0
gas_num 349 0.26 0.44 0 1
ass_ipcc 514 0.38 0.49 0 1
luc 533 0.52 0.50 0 1
luc_dir 533 0.52 0.50 0 1
luc_indir 533 0.04 0.19 0 1
uncer_ref 533 0.58 0.49 0 1
uncer_MC 533 0.10 0.29 0 1
uncer_SA 533 0.37 0.48 0 1
uncer_MCSA 533 0.47 0.50 0 1
impcat_nev 533 0.32 0.47 0 1
impcat_nrc 533 0.43 0.50 0 1
impcat_nrcnev 533 0.51 0.50 0 1
impcat_gwp 533 1.00 0.00 1 1
impcat_other 533 0.99 2.17 0 9
impcat_all 533 2.74 2.35 1 12
Typology of the study
lit_pr 533 0.62 0.49 0 1
lit_or 533 0.09 0.29 0 1
lit_dir 533 0.03 0.18 0 1
lit_ordir 533 0.12 0.33 0 1
lit_wp 533 0.26 0.44 0 1
year 533 2009.39 1.32 2002 2011
year_07 533 0.97 0.18 0 1
year_09 533 0.90 0.30 0 1
year_10 533 0.58 0.49 0 1
zlab_us 533 0.32 0.47 0 1
zlab_eu 533 0.67 0.47 0 1
zlab_other 533 0.01 0.11 0 1  
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Table C.2 – Descriptive statistics for the effect size and variables  of the econometric G3 sample 

# of values mean std dev min max
Descriptive statistics for the Effect Size
es 69 58.84 104.99 -85.00 332.20
es_min 69 -58.50 91.73 -352.81 101.59
es_max 69 176.17 243.48 3.92 828.67
es_var 69 9439.33 21386.86 265.09 64159.87
es_et 69 59.86 77.08 16.28 253.30
Technical data
gen_2 69 0.00 0.00 0 0
gen_3 69 1.00 0.00 1 1
etha 69 0.00 0.00 0 0
btl 69 0.00 0.00 0 0
fame 69 0.80 0.41 0 1
hvo 69 0.22 0.42 0 1
mat_algae 69 1.00 0.00 1 1
mat_agrires 69 0.00 0.00 0 0
mat_for 69 0.00 0.00 0 0
mat_enercult 69 0.00 0.00 0 0
mat_farmwood 69 0.00 0.00 0 0
mat_other 69 0.00 0.00 0 0
mat_cult 69 0.00 0.00 0 0
coprod 69 1.00 0.00 1 1
cop_gly 69 0.68 0.47 0 1
cop_elec 69 0.30 0.46 0 1
cop_heat 69 0.39 0.49 0 1
cop_algmeal 69 0.77 0.43 0 1
cop_biog 69 0.00 0.00 0 0
cop_other 69 0.94 0.92 0 2
cop_otherelec 69 0.86 0.35 0 1
coprod_num 69 2.93 1.72 1 5
mass_yield_exist 69 0.06 0.24 0 1
g3_productivity 68 31.05 19.58 6.85 150.00
g3_oil 69 0.41 0.11 0.15 0.70
g3_Oppond 69 0.68 0.47 0 1
zloc_us 69 0.41 0.49 0 1
zloc_eu 69 0.51 0.50 0 1
zloc_other 69 0.09 0.28 0 1
Methodological choices
lca_att 69 0.91 0.28 0 1
lca_cons 69 0.09 0.28 0 1
wtt 69 0.61 0.49 0 1
wtw 69 0.39 0.49 0 1
infrastruct 69 0.51 0.50 0 1
copval_alloc_ener 69 0.09 0.28 0 1
copval_alloc_mass 69 0.00 0.00 0 0
copval_alloc_markval 69 0.03 0.17 0 1
copval_alloc_exerg 69 0.00 0.00 0 0
copval_alloc 69 0.12 0.32 0 1
copval_systexp 69 0.88 0.32 0 1
copval_hyb 69 0.55 0.50 0 1
wtw*g3_carbneut 69 0.00 0.00 0 0
gas_num 69 0.45 0.50 0 1
ass_ipcc 69 0.48 0.50 0 1
luc 69 0.09 0.28 0 1
luc_dir 69 0.09 0.28 0 1
luc_indir 69 0.09 0.28 0 1
uncer_ref 69 0.43 0.50 0 1
uncer_MC 69 0.00 0.00 0 0
uncer_SA 69 0.57 0.50 0 1
uncer_MCSA 69 0.57 0.50 0 1
impcat_nev 69 0.28 0.45 0 1
impcat_nrc 69 0.39 0.49 0 1
impcat_nrcnev 69 0.67 0.47 0 1
impcat_gwp 69 1.00 0.00 1 1
impcat_other 69 0.68 1.18 0 5
impcat_all 69 2.35 1.44 1 7
Typology of the study
lit_pr 69 0.70 0.46 0 1
lit_or 69 0.00 0.00 0 0
lit_dir 69 0.09 0.28 0 1
lit_ordir 69 0.09 0.28 0 1
lit_wp 69 0.22 0.42 0 1
year 69 2009.87 0.34 2009 2010
year_07 69 1.00 0.00 1 1
year_09 69 1.00 0.00 1 1
year_10 69 0.87 0.34 0 1
zlab_us 69 0.41 0.49 0 1
zlab_eu 69 0.51 0.50 0 1
zlab_other 69 0.09 0.28 0 1  

 



64 
 

Table C.3 – Descriptive statistics for the effect size and variables  of the econometric G2 sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 464 24.15 21.95 -24.00 85.80
es_min 464 -2.40 38.69 -307.59 49.94
es_max 464 50.75 44.47 -19.10 380.55
es_var 464 510.55 2552.67 0.00 27149.13
es_et 464 13.62 18.05 0.03 164.77
Technical data
gen_2 464 1.00 0.00 1 1
gen_3 464 0.00 0.00 0 0
etha 464 0.69 0.46 0 1
btl 464 0.31 0.46 0 1
fame 464 0.00 0.00 0 0
hvo 464 0.00 0.00 0 0
mat_algae 464 0.00 0.00 0 0
mat_agrires 464 0.23 0.42 0 1
mat_for 464 0.06 0.23 0 1
mat_enercult 464 0.34 0.47 0 1
mat_farmwood 464 0.11 0.32 0 1
mat_other 464 0.26 0.44 0 1
mat_cult 464 0.45 0.50 0 1
coprod 464 0.89 0.31 0 1
cop_gly 464 0.00 0.00 0 0
cop_elec 464 0.70 0.46 0 1
cop_heat 464 0.07 0.26 0 1
cop_algmeal 464 0.00 0.00 0 0
cop_biog 464 0.21 0.41 0 1
cop_other 464 0.14 0.35 0 1
cop_otherelec 464 0.40 0.49 0 1
coprod_num 464 1.12 0.51 0 3
mass_yield_exist 464 0.73 0.44 0 1
g2_mass_yield 341 0.22 0.07 0.07 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 0 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0
zloc_us 464 0.31 0.46 0 1
zloc_eu 464 0.67 0.47 0 1
zloc_other 464 0.02 0.13 0 1
Methodological choices
lca_att 464 0.98 0.15 0 1
lca_cons 464 0.02 0.15 0 1
wtt 464 0.32 0.47 0 1
wtw 464 0.68 0.47 0 1
infrastruct 464 0.40 0.49 0 1
copval_alloc_ener 464 0.29 0.46 0 1
copval_alloc_mass 464 0.05 0.23 0 1
copval_alloc_markval 464 0.11 0.32 0 1
copval_alloc_exerg 464 0.01 0.08 0 1
copval_alloc 464 0.47 0.50 0 1
copval_systexp 464 0.50 0.50 0 1
copval_hyb 464 0.00 0.05 0 1
gas_num 280 0.21 0.41 0 1
ass_ipcc 445 0.36 0.48 0 1
luc 464 0.58 0.49 0 1
luc_dir 464 0.58 0.49 0 1
luc_indir 464 0.03 0.17 0 1
uncer_ref 464 0.60 0.49 0 1
uncer_MC 464 0.11 0.31 0 1
uncer_SA 464 0.34 0.47 0 1
uncer_MCSA 464 0.45 0.50 0 1
impcat_nev 464 0.33 0.47 0 1
impcat_nrc 464 0.43 0.50 0 1
impcat_nrcnev 464 0.49 0.50 0 1
impcat_gwp 464 1.00 0.00 1 1
impcat_other 464 1.04 2.28 0 9
impcat_all 464 2.80 2.45 1 12
Typology of the study
lit_pr 464 0.61 0.49 0 1
lit_or 464 0.10 0.30 0 1
lit_dir 464 0.02 0.15 0 1
lit_ordir 464 0.13 0.33 0 1
lit_wp 464 0.26 0.44 0 1
year 464 2009.32 1.40 2002 2011
year_07 464 0.96 0.19 0 1
year_09 464 0.89 0.32 0 1
year_10 464 0.53 0.50 0 1
zlab_us 464 0.30 0.46 0 1
zlab_eu 464 0.70 0.46 0 1
zlab_other 464 0.00 0.00 0 0  
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Table C.4 – Descriptive statistics for the effect size and variables  of the econometric G2-Ethanol sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 321 26.61 22.26 -23.65 85.80
es_min 321 1.81 41.79 -307.59 49.94
es_max 321 51.45 45.93 -14.10 380.55
es_var 321 532.67 3020.32 0.00 27149.13
es_et 321 12.72 19.29 0.03 164.77
Technical data
gen_2 321 1.00 0.00 1 1
gen_3 321 0.00 0.00 0 0
etha 321 1.00 0.00 1 1
btl 321 0.00 0.00 0 0
fame 321 0.00 0.00 0 0
hvo 321 0.00 0.00 0 0
mat_algae 321 0.00 0.00 0 0
mat_agrires 321 0.26 0.44 0 1
mat_for 321 0.02 0.14 0 1
mat_enercult 321 0.31 0.46 0 1
mat_farmwood 321 0.10 0.30 0 1
mat_other 321 0.31 0.46 0 1
mat_cult 321 0.41 0.49 0 1
coprod 321 0.89 0.31 0 1
cop_gly 321 0.00 0.00 0 0
cop_elec 321 0.60 0.49 0 1
cop_heat 321 0.02 0.15 0 1
cop_algmeal 321 0.00 0.00 0 0
cop_biog 321 0.30 0.46 0 1
cop_other 321 0.14 0.35 0 1
cop_otherelec 321 0.44 0.50 0 1
coprod_num 321 1.07 0.48 0 3
mass_yield_exist 321 0.65 0.48 0 1
g2_mass_yield 209 0.25 0.05 0.14 0.50
eth_expl 321 0.08 0.27 0 1
eth_ac 321 0.83 0.37 0 1
eth_amm 321 0.09 0.28 0 1
eth_other 321 0.00 0.00 0 0
zloc_us 321 0.35 0.48 0 1
zloc_eu 321 0.63 0.48 0 1
zloc_other 321 0.02 0.16 0 1
Methodological choices
lca_att 321 0.98 0.15 0 1
lca_cons 321 0.02 0.15 0 1
wtt 321 0.36 0.48 0 1
wtw 321 0.64 0.48 0 1
infrastruct 321 0.42 0.49 0 1
copval_alloc_ener 321 0.36 0.48 0 1
copval_alloc_mass 321 0.05 0.22 0 1
copval_alloc_markval 321 0.05 0.22 0 1
copval_alloc_exerg 321 0.01 0.10 0 1
copval_alloc 321 0.47 0.50 0 1
copval_systexp 321 0.50 0.50 0 1
copval_hyb 321 0.00 0.06 0 1
gas_num 177 0.12 0.33 0 1
ass_ipcc 321 0.37 0.48 0 1
luc 321 0.66 0.47 0 1
luc_dir 321 0.66 0.47 0 1
luc_indir 321 0.03 0.17 0 1
uncer_ref 321 0.53 0.50 0 1
uncer_MC 321 0.12 0.33 0 1
uncer_SA 321 0.39 0.49 0 1
uncer_MCSA 321 0.52 0.50 0 1
impcat_nev 321 0.22 0.42 0 1
impcat_nrc 321 0.36 0.48 0 1
impcat_nrcnev 321 0.39 0.49 0 1
impcat_gwp 321 1.00 0.00 1 1
impcat_other 321 0.73 1.81 0 9
impcat_all 321 2.32 1.92 1 11
Typology of the study
lit_pr 321 0.61 0.49 0 1
lit_or 321 0.04 0.19 0 1
lit_dir 321 0.02 0.12 0 1
lit_ordir 321 0.05 0.22 0 1
lit_wp 321 0.33 0.47 0 1
year 321 2009.45 1.26 2002 2011
year_07 321 0.96 0.19 0 1
year_09 321 0.94 0.24 0 1
year_10 321 0.51 0.50 0 1
zlab_us 321 0.34 0.47 0 1
zlab_eu 321 0.66 0.47 0 1
zlab_other 321 0.00 0.00 0 0  
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Table C.5 – Descriptive statistics for the effect size and variables  of the econometric G2-BtL sample 
# of values mean std dev min max

Descriptive statistics for the Effect Size
es 143 18.65 20.25 -24.00 85.68
es_min 143 -11.84 28.54 -120.95 43.58
es_max 143 49.19 41.12 -19.10 169.75
es_var 143 460.89 827.83 0.21 5499.18
es_et 143 15.66 14.74 0.46 74.16
Technical data
gen_2 143 1.00 0.00 1 1
gen_3 143 0.00 0.00 0 0
etha 143 0.00 0.00 0 0
btl 143 1.00 0.00 1 1
fame 143 0.00 0.00 0 0
hvo 143 0.00 0.00 0 0
mat_algae 143 0.00 0.00 0 0
mat_agrires 143 0.15 0.36 0 1
mat_for 143 0.15 0.36 0 1
mat_enercult 143 0.41 0.49 0 1
mat_farmwood 143 0.13 0.34 0 1
mat_other 143 0.15 0.36 0 1
mat_cult 143 0.55 0.50 0 1
coprod 143 0.89 0.32 0 1
cop_gly 143 0.00 0.00 0 0
cop_elec 143 0.92 0.27 0 1
cop_heat 143 0.18 0.39 0 1
cop_algmeal 143 0.00 0.00 0 0
cop_biog 143 0.00 0.00 0 0
cop_other 143 0.13 0.34 0 1
cop_otherelec 143 0.31 0.47 0 1
coprod_num 143 1.24 0.56 0 2
mass_yield_exist 143 0.92 0.27 0 1
g2_mass_yield 132 0.16 0.06 0.07 0.42
btl_pre_torr 141 0.06 0.23 0 1
btl_pre_pyro 141 0.04 0.20 0 1
btl_pre_none 141 0.90 0.30 0 1
btl_pro_autoth 141 0.88 0.33 0 1
btl_pro_alng 141 0.09 0.28 0 1
btl_pro_alelec 141 0.01 0.08 0 1
btl_pro_alrenew 141 0.03 0.17 0 1
btl_gasrecycl 141 0.01 0.08 0 1
btl_ccs 141 0.00 0.00 0 0
zloc_us 143 0.22 0.42 0 1
zloc_eu 143 0.78 0.42 0 1
zloc_other 143 0.00 0.00 0 0
Methodological choices
lca_att 143 0.97 0.17 0 1
lca_cons 143 0.03 0.17 0 1
wtt 143 0.24 0.43 0 1
wtw 143 0.76 0.43 0 1
infrastruct 143 0.36 0.48 0 1
copval_alloc_ener 143 0.14 0.35 0 1
copval_alloc_mass 143 0.06 0.24 0 1
copval_alloc_markval 143 0.25 0.44 0 1
copval_alloc_exerg 143 0.00 0.00 0 0
copval_alloc 143 0.45 0.50 0 1
copval_systexp 143 0.48 0.50 0 1
copval_hyb 143 0.00 0.00 0 0
gas_num 103 0.36 0.48 0 1
ass_ipcc 124 0.35 0.48 0 1
luc 143 0.41 0.49 0 1
luc_dir 143 0.41 0.49 0 1
luc_indir 143 0.03 0.17 0 1
uncer_ref 143 0.76 0.43 0 1
uncer_MC 143 0.08 0.27 0 1
uncer_SA 143 0.22 0.42 0 1
uncer_MCSA 143 0.30 0.46 0 1
impcat_nev 143 0.57 0.50 0 1
impcat_nrc 143 0.59 0.49 0 1
impcat_nrcnev 143 0.71 0.45 0 1
impcat_gwp 143 1.00 0.00 1 1
impcat_other 143 1.73 2.99 0 9
impcat_all 143 3.90 3.10 1 12
Typology of the study
lit_pr 143 0.61 0.49 0 1
lit_or 143 0.25 0.44 0 1
lit_dir 143 0.04 0.20 0 1
lit_ordir 143 0.29 0.46 0 1
lit_wp 143 0.10 0.30 0 1
year 143 2009.05 1.63 2002 2011
year_07 143 0.97 0.18 0 1
year_09 143 0.76 0.43 0 1
year_10 143 0.58 0.50 0 1
zlab_us 143 0.22 0.42 0 1
zlab_eu 143 0.78 0.42 0 1
zlab_other 143 0.00 0.00 0 0  
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